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Abstract. This paper completes the construction of the Brauer tree of the

sporadic simple Thompson group in characteristic 19. Our main computa-
tional tool to arrive at this result is a new parallel implementation of the

DirectCondense method.

1. Introduction and Results

Let Th denote the sporadic simple Thompson group. In [6] the Brauer tree of the
principal 19-block of Th has been determined up to two possibilities. In this note,
we show which of these is the correct one, and we describe the new computational
techniques which enabled us to decide between these two possibilities. We believe
that the methods presented here will be powerful enough to solve even more difficult
problems in the modular character theory of the sporadic groups.

As a general reference for the theory of blocks of cyclic defect, the interpretation
of a Brauer tree and its planar embedding see the introduction of [6]. The planar
embedded Brauer tree of the principal 19-block of Th is given in Table 1, it coincides
with the tree given in [6, p. 277, Case I]. Its nodes are labelled by the numbers of
the corresponding ordinary irreducible characters, where we use the notation for
the ordinary irreducible characters of Th as is given in [3, p. 176], and can also
be accessed in GAP [14]. In Table 2 we list the ordinary irreducible characters
of G lying in the principal 19-block, plus some additional information concerning
these. The column headed “CC” contains the entry “r” in rows corresponding to
real valued characters. Otherwise it contains the number of the complex conjugate
character. The last column of Table 2 contains the values of the characters on
elements of class 19A. Characters which are connected on the Brauer tree must
have unequal values on this class. The degrees of the irreducible Brauer characters
are given in Table 3. A Brauer character corresponding to an edge of the tree
connecting χi and χj , with i < j is denoted by φi.

To obtain the result of this paper, we had to apply a new condensation technique
to a module of dimension 976 841 775, the permutation module on the cosets of the
third maximal subgroup of Th. The condensed module has dimension 1403 over F19

and can be analyzed with the MeatAxe [10], giving the result. The details are given
in Section 2. We remark that in order to arrive at only two possibilities for the
Brauer tree in [6], we had to rule out several other possibilities using sophisticated
techniques involving Green correspondence. We have checked the results of the
condensation against these other possible trees. None of them is consistent with
the condensation results.
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Table 1. The Brauer Tree mod 19 of Th
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Table 2. The Characters in the Principal 19-Block of Th

χ Degree CC 19A

1 1 r 1
2 248 r 1
4 27 000 5 1
5 27 000 4 1
9 85 995 10 1

10 85 995 9 1
12 767 637 13 −1
13 767 637 12 −1
22 4 096 000 23 −1

χ Degree CC 19A

23 4 096 000 22 −1
25 4 881 384 r −1
26 4 936 750 r −1
29 6 696 000 30 1
30 6 696 000 29 1
35 21 326 760 36 1
36 21 326 760 35 1
43 76 271 625 r 1
44 77 376 000 r 1
48 190 373 976 r −1

The condensation method has originally been conceived by Parker and Thackray,
see [15], and is also described in [13] and [8]. The idea of the new DirectCondense
technique goes back to [11], and a fuller discussion is given in [5]. In Section 3 we
give details on the implementation and special techniques for doing the condensation
in practice.

2. Condensation

2.1. General remarks. Let A be finite dimensional algebra over the field F and
e ∈ A be an idempotent. Let mod-A denote the category of finitely generated right
A-modules. Then the exact functor

?⊗A Ae : mod-A −→ mod-eAe : M 7−→Me
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Table 3. The Degrees of the Irreducible Brauer Characters

Char. Degree

φ1 1
φ2 248
φ4 27 000
φ5 27 000
φ9 85 995
φ10 85 995
φ12 740 637
φ13 740 637
φ22 4 096 000

Char. Degree

φ23 4 096 000
φ25 4 881 383
φ26 4 936 502
φ29 6 696 000
φ30 6 696 000
φ35 16 490 123
φ36 16 490 123
φ43 71 335 123
φ44 72 494 617

is called the condensation functor with respect to e, and Me is called the condensa-
tion of M . Condensation gives us a tool to analyse the submodule structure of M
by looking at Me instead. We will apply this for F a field of prime characteristic
p, A = FG, where G is a finite group, K the condensation subgroup of G having
order |K| prime to p, and

e = eK = |K|−1 ·
∑
g∈K

g ∈ FG.

If M is an FG-module, then Me is the subset of M consisting of the elements left
fixed by K. Let φ denote the Brauer character of M , which is extended arbitrarily
to a class function φ̃ on G. Then we have

dimF (Me) = (φ|K , 1K)K = (φ̃, 1GK)G,

where (·, ·)G denotes the scalar product for class functions. As each Brauer char-
acter can be written as a Z-linear combination of ordinary characters restricted to
the p-regular conjugacy classes, the computation of these scalar products can be
carried out entirely in terms of ordinary characters. If the block under considera-
tion is described by a Brauer tree, these linear combinations can directly be read
off from the tree.

If P is an FG-permutation module on the finite set Ω, then the condensed
module Pe can be described as follows. Let {Oi} be the set of K-orbits on Ω, and
Ōi :=

∑
ω∈Oi ω ∈ P be the orbit sums. Then {Ōi} is an F -basis of Pe, and for

g ∈ G the action of ege ∈ eFGe on Pe is given as

Ōi · ege =
∑
j

aij(g) · |Oj |−1 · Ōj , where aij(g) = |{ω ∈ Oi : ωg ∈ Oj}|.

Hence to find the action of ege, we are reduced to find the K-orbits on Ω, their
lengths, and the aij(g).

2.2. The Thompson group. Now we let G := Th. For the necessary group
theoretic information we refer the reader to [3]. We start our constructions with
the irreducible representation D248 over F2 which is the 2-modular reduction of the
irreducible ordinary representation of the same degree. Matrices for the action of
two generators A,B ∈ G on the module underlying D248 can be found in the group



4 Cooperman/Hiss/Lux/Müller

representation library [16]. Here, A is a 2A element, B is a 3A element, and their
product AB is a 19A element. This is a rationally rigid triple for G, see [17, 9]. The
following computations are carried out using D248 with the help of the MeatAxe
and GAP.

We now let P1 := AB, P2 := AB2, and H := 〈H1,H2〉, where

H1 := (P1P2P1P
2
2P1P2)2P2, H2 := (H18

1 P−3
1 AP 3

1 )18.

Furthermore, we let K := 〈K1,K2〉, where K1 := H1, K2 := Q2Q1Q
−1
2 , and

Q1 := H1H2H1H
2
2 (H1H2)2(H1H

2
2 )2, Q2 := (H2H1)2H3

1 (H2H1)3.

We are going to choose K as our condensation subgroup. Hence we have to show
that |K| is not divisible by 19, and we have to find the scalar products (χ, 1GK)G
for all irreducible ordinary characters of G.

We find that H1 is of order 36, and that both H1, H2 centralize H18
1 . Hence

H ≤ CG(H18
1 ) ∼= 21+8

+ · A9. We will show, that H equals that centralizer. First
we collect a few elements in H generating a normal subgroup O ≤ H of order 29.
Then it turns out that D248|H has two different constituents of dimension 8, 8a
and 8b say, where 8b restricts irreducibly to K, whereas 8a has a fixed space of
dimension 1. Now the vector fixed by K yields an orbit of length 120 under the
action of H, yielding a permutation representation P120 of H. This permutation
group turns out to be of order 181 440 = |A9|. As O is contained in the kernel of
P120, we conclude that H = CG(H18

1 ).
By construction, we know that K is contained in a subgroup 21+8

+ .L2(8) : 3 of
H, which is of index 120 in H. Using the action of D248|K on an orbit of a suitable
vector, we find that |K| ≥ 774 144, hence we have K ∼= 21+8

+ .L2(8) : 3.
To compute the scalar products (χ, 1GK)G, we first observe that (χ, 1GK)G =

(χH , 1HK) holds. The character tables of G and H are accessible in GAP, and it
turns out that the fusion map of the conjugacy classes of H into those of G is
uniquely determined up to table automorphisms of G. Furthermore, as the nor-
mal subgroup O of H is contained in K, it is enough to find the fusion map from
L2(8) : 3 to A9, which is induced by the fusion map from K to H. Hence we choose
a factor fusion map from the character table of H to that of A9. Having fixed
such a map, the admissible table automorphisms of A9 are those which leave the
chosen fusion map invariant. It now turns out that there are exactly two possible
fusion maps from L2(8) : 3 to A9, and these are not conjugate under the action
of the admissible table automorphisms. A look at the classes of A9 which are the
images of the classes of elements of order 36 under the factor fusion map shows,
that these classes in turn are in the image of exactly one of the candidate fusion
maps from L2(8) : 3 to A9. Now the scalar products (χ, 1GK)G for all irreducible
ordinary characters of G can be computed. They are given in Table 4.

The module we are going to condense is the FG-permutation module P on
the cosets of H, where F := F19. It is found as the 19-modular reduction of
the corresponding ZG-permutation module. The latter in turn is found as the
action of G on the orbit of a nontrivial vector in the module underlying D248

which is fixed by H. Using the MeatAxe, such a vector is found to exist and to
be uniquely determined. The orbit is of length 976 841 775, which is the index of
H in G. From Table 4, where the scalar products (χ, 1GH)G are given, we compute
dimF (Pe) = 1403. A star in the second column of Table 4 indicates a character in
the principal block of FG.
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Table 4. Two Permutation Characters of G

χ pb H K

1 ? 1 1
2 ? . .
3 . .
4 ? . .
5 ? . .
6 . .
7 1 3
8 1 2
9 ? . .

10 ? . .
11 1 3
12 ? . 2
13 ? . 2
14 . .
15 . .
16 . 1

χ pb H K

17 . .
18 . .
19 1 9
20 . 2
21 1 10
22 ? . 5
23 ? . 5
24 1 8
25 ? 2 15
26 ? . 8
27 . 6
28 . 6
29 ? . 6
30 ? . 6
31 . 15
32 2 21

χ pb H K

33 2 31
34 . 25
35 ? . 27
36 ? . 27
37 1 43
38 1 43
39 2 62
40 2 70
41 1 73
42 1 86
43 ? . 95
44 ? 2 111
45 . 100
46 1 119
47 1 147
48 ? 1 236

Table 5. Result of Condensation

Dim. Mlp.

1a 3
2a 1
3a 1
3b 1
6a 1
6b 1
8a 1
9a 1

Dim. Mlp.

10a 1
14a 4
20a 1
20b 1
21a 2
31a 2
43a 1
43b 1

Dim. Mlp.

62a 2
70a 2
73a 1
86a 1
87a 1
97a 3

119a 1
147a 1

Let A,B ∈ G denote the elements introduced above. In Section 3 we will describe
how the action of A, B on the orbit of the seed vector and matrices MeAe and MeBe

giving the action of eAe and eBe on Pe are computed actually. We consider the
subalgebra

K := 〈eAe, eBe〉 ≤ eFGe.

In fact there is no reason why K should not be equal to eFGe, but we do not know
whether this is the case. Using the MeatAxe, with the two matrices MeAe and MeBe,
we find the K-constituents of Pe. Their dimensions and their multiplicities are given
in Table 5.
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Table 6. Degrees of Irreducible Brauer Characters: Case I

Char. Degree di

φ1 1 1
φ2 248 .
φ4 27 000 .
φ5 27 000 .
φ9 85 995 .
φ10 85 995 .
φ12 740 637 2
φ13 740 637 2
φ22 4 096 000 5

Char. Degree di

φ23 4 096 000 5
φ25 4 881 383 14
φ26 4 936 502 8
φ29 6 696 000 6
φ30 6 696 000 6
φ35 16 490 123 20
φ36 16 490 123 20
φ43 71 335 123 87
φ44 72 494 617 97

2.3. Proof of the result. We have to decide between two possible Brauer trees
for the principal 19-block of G. The first possibility, Case I, is the tree given in
the introduction, which will turn out to be the correct one. The second possibility,
Case II, is given below.
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The degrees of the irreducible Brauer characters φi in the principal block and the

dimensions di of the corresponding condensed modules for Case I are given in Table
6. These can be computed from the Brauer tree and Table 4. For example, in Case I,
φ44 = χ44 − χ25 + χ1 on 19-regular elements of G. Hence d44 = 111− 15 + 1 = 97.
In Case II, we have φ35 = φ36 = 20 586 123, φ44 = 64 302 617, d35 = d36 = 25, and
d44 = 87. All other degrees and dimensions remain unchanged.

By Tables 4 and 6, the eFGe-module Pe has unique composition factors of de-
grees 147 and 119, respectively. These correspond to the two defect 0 characters χ46

and χ47. All other eFGe-composition factors of Pe have a smaller dimension, in
fact at most 97. It now follows from Table 5, that the irreducible eFGe-modules
of dimensions 147 and 119 restrict irreducibly to K. Finally, Table 5 shows that
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there is an eFGe-composition factor of Pe of dimension at least 97, different from
the ones of dimensions 147 and 119. This implies that Case I is correct.

3. Computations

The key idea, which goes back to [11], of the condensation method applied here
is to use the interpretation of the abstract set Ω, where G acts on, as a set of
vectors in a space, where G acts on linearly. This gives us a compact and efficient
way to compute the K-orbits and the action of group elements g ∈ G. A fuller
discussion of this method is contained in [5]. The program from that description
was used as the base, but performance enhancements, modifications for robustness
and ease of use, and checkpointing facilities had to be added to make it work for the
case of G = Th in its 248-dimensional representation D248 over F2. This section
concentrates on these implementation issues.

3.1. Algorithm. The vectors in F248
2 are stored with eight entries per Byte. So, a

vector requires 31 Bytes. Since the machines having been used have 64-bit words,
the vectors are in fact stored in 32 Bytes each. Matrix-vector multiplication over
F2 is implemented using logical bit operations. A lookup table of all linear combi-
nations of each set of four adjacent rows under F2 is kept for each matrix. Such a
lookup table was first used by Arlazarov et al. [1, 2, p. 245], and was popularized
by Parker [10] in his software for the MeatAxe.

The natural algorithm would have been to maintain a hash table for all the
976 841 775 vectors. Each vector would be stored in the table, along with an index
indicating which orbit it comes from. At 32 Bytes per vector, plus hash table
overhead, this would imply the use of more than 32 Gigabytes, which would be far
from possible at our site.

The solution is to store only 1/m of the vectors, where m = 64 in our case, thus
allowing the entire computation to proceed within the available virtual memory.
This is accomplished by applying a second hash-like function, and by saving in the
hash table only those vectors for which the function returns zero modulo m. There
are a few small orbits that do not have such vectors. In the case of such orbits, all
of the vectors are stored in the hash table. Since K has order 774 144, it is always
feasible to place all vectors of a single orbit into a temporary hash table of size less
than 32 Megabytes.

This decision to store only some of the vectors affects another part of the natural
algorithm. At several stages in the algorithm, one must determine if a new vector,
ωg, has previously been encountered, and if it has been encountered, what is the
index of the orbit to which it belongs. The new solution requires one to do a local
search of vectors in the orbit ωgK until one either finds a vector whose second hash
value is 0 modulo m, or else until all vectors of the orbit ωgK have been found.
At this point, one has found a vector ω′ in the same orbit as ωg, which either is
contained in the main hash table, and one can look up the index of the orbit, or
one adds ω′ to a queue of representatives of new orbits to be explored. Note that
one is able to determine a vector which should be contained in the hash table even
without having access to the hash table. This is an important point in section 3.2,
where the distributed version of the algorithm is described.

The other complication of the implementation was the decision whether to first
store the vectors in the hash table, and then compute the matrix entries aij , see 2.1,
or else to compute both at once. For efficiency reasons, it was decided to compute
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the two at the same time. Thus, when an image vector ωg is computed, one next
determines whether a vector from the corresponding orbit is in the hash table. If
this is the case, one increments the appropriate aij entry. But if it was not part of
a known orbit, when does one increment an appropriate aij? Further, one must be
careful that the number of images ωg in the queue representing new orbits does not
grow too large. This is especially worrisome at the beginning, when many points
of new orbits are found, and for an unknown orbit there may be a large number
of member vectors waiting in the queue. Ensuring proper accounting and memory
restrictions is what leads to complications.

The same code is then used to condense the second and further matrices, main-
taining the orbit data structures found during the condensation of the first matrix.

3.2. Parallelization. The parallelization was carried out through a master-slave
architecture. The code was considerably simplified by the use of the STAR/MPI soft-
ware [4], a transaction-oriented parallel LISP. The computation used GCL Common
LISP. This parallel tool is based on the MPICH implementation of MPI. At North-
eastern University, a small “homegrown” subset of MPI has been implemented by
one of us (G. C.) and R. Kyzas as a teaching tool, which replaced MPICH in part
of the computations.

This software helped to handle such concurrency issues as when two distinct
slaves were exploring the same orbit with two distinct orbit representatives from
the queue of new orbits.

3.3. Timing. The computations were done using eight 75 MHz Alpha 3000/300
workstations at Northeastern University. While the seven slave workstations had
64 Megabytes and 300 Megabytes of virtual memory, the master had 192 Megabytes
and 1 Gigabyte of virtual memory, Timing tests indicate that a matrix-vector mul-
tiplication costs about 23 microseconds.

The computation took about one month on eight workstations. The calculation
was roughly divided into 10 days to determine the orbits, 10 days for the condensa-
tion of the first generator with respect to those orbits, and 10 days for the second
generator. The first two parts of the computation were mixed together, as described
in section 3.1, although the majority of the first 10 days was still spent in building
new orbits and the majority of the second 10 days in computing the condensation
of the first generator.

There are two constraints on the speed of the computation: the number of
slaves, or equivalently, the CPU speed of the slaves, and semiconductor memory
on the master. Determination of the orbits during the first 10 days was primarily
constrained by the available CPU power. This is because the number of matrix-
vector multiplications in the computation of the points of an orbit Oi is roughly
proportional to |Oi|k, where k is the size of the generating set for K. Yet, |Oi|/m
points are needed to be stored on the master. Thus, the slave carries out km
matrix-vector multiplications for each hash access on the master. In the second
phase, condensation of a generator with respect to those orbits, requires on average
approximately |Oi|m matrix-vector multiplications, while |Oi| points need to be
accessed on the master from the hash array. Hence the slave carries out m matrix-
vector multiplications for each hash access on the master. In addition, in the
second phase, the hash table is almost full and one must also update the matrix
associated with the condensation. Thus, there are still more demands on memory.
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The memory demands for the hash array are proportional, of course, to |Ω|/m. The
factor m = 64 was chosen precisely to balance these competing demands of memory
and CPU time. It was found empirically that it was advantageous to choose m such
that the hash array was larger than RAM, and accept a certain paging penalty. In
our example, the hash array occupied 610 Megabytes.
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