
A Disk-Based Parallel Implementation for Direct
Condensation of Large Permutation Modules

Eric Robinson
�

College of Computer Science
Northeastern University

Boston, MA 02115 / USA
tivadar@ccs.neu.edu

J�urgen M�uller
Lehrstuhl D f�ur Mathematik

RWTH Aachen
52062 Aachen / Germany

juergen.mueller@
math.rwth-aachen.de

Gene Cooperman
�

College of Computer Science
Northeastern University

Boston, MA 02115 / USA
gene@ccs.neu.edu

ABSTRACTThrough the use of a new disk-based method for enumerat-ing very large orbits, ondensation for orbits with tens of bil-lions of elements an be performed. The algorithm is novelin that it o�ers eÆient aess to data using distributed disk-based data strutures. This provides fast aess to hundredsof gigabytes of data, whih allows for omputing withoutworrying about memory limitations.The new algorithm is demonstrated on one of the long-standing open problems in the Modular Atlas Projet [11℄:the Brauer tree of the prinipal 17-blok the sporadi sim-ple Fisher group Fi23. The tree is ompleted by om-puting three orbit ounting matries for the Fi23-orbit ofsize 11; 739; 046; 176 ating on vetors of dimension 728 overGF (2). The onstrution of these matries requires 3-1/2days on a luster of 56 omputers, and uses 8 GB of diskstorage and 800 MB of memory per mahine.
Categories and Subject DescriptorsI.1.2 [Symboli and Algebrai Manipulation℄: Algo-rithms|algebrai algorithms
General TermsAlgorithms, Experimentation
Keywordspermutation groups, matrix groups, disk-based omputa-tion, parallel omputation, Brauer trees, ondensation, spo-radi Fisher group
1. INTRODUCTIONIn reent years, in partiular in the framework of theMod-ular Atlas projet mentioned below, but also in other applia-�This work was partially supported by the National SieneFoundation under Grant ACIR-0342555.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

tions, the need of tehniques to deal with very large permu-tation domains ated on by �nite groups beame apparent.Condensation, whose formalism is realled in Setion 2, isone of the workhorses allowing one to handle those, by some-times dramatially dereasing the size of the objets to bemanaged expliitly, while retaining enough of their internalstruture to remain useful.In [7℄ this was done for the orbit of some vetor under alinear ation of the group in question, by �rst forming a per-mutation representation, whih was then proessed to �ndthe assoiated ondensed module. Suh omputations werelimited to permutations with at most hundreds of millionsof points, due to memory limitations. Those omputationsused a spae-time trade-o� in order to stay within the limitsof aggregate RAM in a luster. Under suh a spae-timetrade-o�, optimizing any omputation with more than a bil-lion points typially pushed the time requirements so farthat the omputation beame impratial.A more reent researh diretion [6, 22℄ looked at usingdistributed disk for large omputations suh as orbit enu-meration. Here the disks of a luster are aessed in astreaming manner for similar performane to a single mem-ory module. Essentially this gives a omputation aess toterabytes of fast storage where previously only gigabyteswere available. Many problems that were previously impos-sible have beome feasible due to a large spae-time tradeo�.Using one of these distributed disk-based tehniques apa-ble of generating orbits with tens of billions of vetors, itbeomes advantageous to work with the vetors in the orbitdiretly rather than produing a permutation representa-tion.In this paper we present a distributed disk-based imple-mentation of the diret ondense tehnique. The details ofthe underlying sequential algorithm and the new distributedalgorithm are given in Setions 3 and 4, respetively. Ourimplementation, whih of ourse is of general purpose, hasbeen suessfully tested by way of the following example,whih is detailed in Setion 5: We onsider the sporadisimple Fisher group Fi23, whih has a transitive permu-tation domain of size 11; 739; 046; 176. This is realized asa set of vetors of dimension 782 over GF (2). One thisorbit has been enumerated, it is partitioned into the 6; 486suborbits of a suitable ondensation subgroup, and the as-soiated orbit ounting matries for several elements of Fi23are produed.

1.1 Related WorkEnumeration and diret ondensation of large orbits, andtheir appliation to modular representations and other as-pets of �nite groups, have raised some interest in reentyears. The diret ondense tehnique has been invented in[20℄, already inluding a notion of landmarks. It has beenimplemented as parallelized versions in [7, 12℄, and has beenfurther developed using subgroup strutures in [15, 17, 19℄.As for onrete examples dealt with, in [5℄ the sporadisimple Thompson group was onsidered, where the om-putational arhiteture STAR/MPI (urrently ParGCL) [3℄was used, while in [18℄ the sporadi simple Lyons group wasonsidered. In both ases, the aim was to omplete ertainBrauer trees. In [15, 16, 19, 22℄, the sporadi simple BabyMonster group was onsidered.
1.2 AcknowledgementsThe authors thank Leo Hill for providing on the North-eastern University luster the extensive disk resoures neededfor this omputation. We also thank Daniel Kunkle of North-eastern University for helpful disussions onerning eÆientdisk-based data strutures and algorithms.
2. BACKGROUND

2.1 NotationIn examining groups and their ations on a vetor spae,it beomes useful to have some shorthand notation: We usethe expression vG, where v is a vetor and G is a group, todenote the G-orbit of v, or vG = fvg : g 2 Gg where vgis the ation of g on v by vetor-matrix multipliation. Inaddition, given a subgroup K � G, a G-orbit O = vG is adisjoint union of K-orbits S = fS1; : : : ; Skg, alled the K-suborbits in O. In partiular, we have jS1j+ : : :+ jSkj = jOj.Finally, it will also be useful to have notation for applyinga partiular group element g 2 G to all elements in a set: ifO is a set of vetors, Og = fwg : w 2 Og.
2.2 CondensationCondensation, or more preisely �xed point ondensation,was invented in [23℄ to aid in �nding new irreduible rep-resentations of a group and to analyze existing ones. Itstheoretial underpinnings as partiular Shur funtors aredesribed in [9℄. Sine its invention it has been used in anumber of settings. The so-alled diret ondense tehniquesrelated to the present work has already been mentioned inSetion 1.1. For more details we refer the reader, for exam-ple, to the overviews in [14, 15℄.Fundamentally, the goal is to ondense a permutation rep-resentation on a large number of points, or a matrix repre-sentation of a high dimension, into a manageable matrixrepresentation. The ondensed representation typially hasa muh smaller dimension than the original one, whih al-lows one to reasonably ompute with ondensed matries,and to extrat information about the original representation.Computing with the original representation would have beeninfeasible.
2.3 Fixed point condensationFormally we onsider the group algebra FG of the groupGover the �eld F of harateristi p. Letting K � G subgrouphaving order jKj prime to p, a so-alled ondensation sub-group, there is the idempotent e = jKj�1 �Pg2K g 2 FG.

Then to any (right) FG-module M we assoiate the on-densed module Me, whih is a module of the so-alled Hekealgebra eFGe. In pratie, Me is the subset ofM onsistingof the elements left �xed by K, from whih omes the name�xed point ondensation.
2.4 Permutation modulesIf FO is the permutation module assoiated to the �niteG-set O, then the ondensed module FOe is desribed asfollows: Letting S1; : : : ; Sk be the K-suborbits in O, we letS+i := Pw2Si w 2 FO be the assoiated orbit sums. ThenfS+i ; : : : ; S+k g is an F -basis of FOe, and for 2 G the ationof the ondensed element ee on FOe is given as S+i � ee =Pj Cij() � jSj j�1 � S+j , whereCij() = jfw 2 Si : w 2 Sjgj:Hene ondensing 2 G essentially boils down to omputingthe orbit ounting matrix C() = [Cij(g)℄ of dimension k.In the diret ondensation tehnique, as it is used here, wedo not write down permutations to desribe the G-ationon O, but instead use a linear G-ation on a vetor spae Vto give an impliit desription of O as follows: We speifya subgroup H � G and a vetor v 2 V suh that H =StabG(v). Thus the orbit O = vG is equivalent as a G-setto the set of osets of H in G.
3. SEQUENTIAL ALGORITHM AND

PREDICTED TIMEHere the sequential ondensation algorithm is presentedalong with an analysis prediting the running time for Fi23.The running time is based on the arhiteture desribed inSetion 4.5.
3.1 Sequential AlgorithmCondensation, as desribed in Setion 2.2, an be brokenup into three phases. These phases are shown below:
3.1.1 Orbit EnumerationOne a suitable vetor v 2 V has been determined, O =vG must be omputed. This an be done in a straightforwardmanner using a breadth-�rst searh algorithm as shown inAlgorithm 1. Let gensG = fg1; : : : ; gmg be the generatorsof G.Algorithm 1: disoverOrbitInput: v; gensGOutput: Olet open a queue with only v in it ;set O an empty set ;while open is not empty dodequeue h from open;for g 2 gensG dot = hg;if t has not been seen thenadd t to O;enqueue t on open;
3.1.2 Suborbit PartitioningOne the elements of O have been enumerated and a on-densation subgroup K has been seleted, O an be parti-tioned into K-suborbits S. This is done by performing a

breadth-�rst searh using the generators gensK = fk1; : : : ; kngof K over the elements in O until all the elements have beenseen. This is shown in Algorithm 2.Algorithm 2: partitionOrbitInput: O; gensKOutput: Sset S ;;while O is not empty doselet any o 2 O;let s disoverOrbit(o; gensK);remove the elements in s from O;add s to S;
3.1.3 Orbit CountingOne O has been partitioned into K-suborbits S and aondensation element 2 G has been seleted, the orbitounting matrix C() must be omputed. This is done byounting, for eah suborbit, how many elements in that sub-orbit map to eah other suborbit, when is applied to them.This is shown in Algorithm 3.Algorithm 3: orbitCountInput: S; Output: C()set C() a jSj � jSj all-zeros matrix ;for i 2 f1; : : : ; jSjg dofor s 2 Si doj = x s.t. sg 2 Sx;Ci;j() = Ci;j() + 1;
3.2 OptimizationsTo store O in full for Fi23 would require storing approx-imately 11:7 � 109 100-byte vetors. This would require atotal storage of approximately 1 terabyte. Here two meth-ods for reduing that spae are presented. These methodsadd to the omputation time required by the algorithms pre-sented in this setion. In addition, however, another methodis presented that redues the time for vetor-matrix multi-pliations.
3.2.1 Fast Vector-Matrix MultiplicationThe generators for Fi23 are of dimension 782 over GF(2).Under optimal onditions, the memory subsystem on an in-dividual node is apable of reading or writing 2.12 GB/s.Given that we have aess to 64 bit operations (spei�allyXOR), the time to perform a vetor-matrix multipliationin Fi23 is 3:6� 10�5s. This time is dominated by the timeto aess memory.However, to speed up the time for vetor-matrix multipli-ations, we an use a tehnique alled greasing. Greasing,whih was invented by Rihard Parker, preomputes mul-tipliation tables by ombining bands of rows for a matrixin order to speed up subsequent multipliations. This teh-nique is also used in GAP [8℄ and Magma [1℄. Sine weonly use two matries (the generators), this method an beused to speed up the omputation using a reasonably smallamount of spae.

3.2.2 Compressed ValuesRather than using full 100 byte vetor values, 12 bytesan be used to represent eah element in O and guaranteethat it is distint from every other element in O with a highprobability. The representation size must be on the order oflg(jOj2) = 2�lg(jOj) in order to guarantee a high probabilityof uniqueness.Storing this representation along with the path in the gen-erators to the value from v requires on average 30 bytes ofstorage per element. In order to use these values for vetor-matrix multipliations, however, the path to the value fromv must be applied to get the full value. While the use ofompressed values redues the spae of the omputation, itresults in additional vetor-matrix multipliations.Orbit enumeration requires storing full values only for thefrontier (or open queue). One the generators have been ap-plied to a value, it an be stored in its ompressed form withno additional omputation time. Suborbit partitioning re-quires rebuilding a single value for eah suborbit. This timeis trivial in omparison to the time to generate the suborbititself. Finally, orbit ounting requires rebuilding only onevalue from eah suborbit as well. After this, the full subor-bit an be produed as it was in the suborbit partitioningphase and an be applied to all values in that suborbit.One again, the time to reprodue a single value is trivial inomparison to the time to generate the suborbit itself.
3.2.3 Landmark DiscoveryAs the size of the orbit O grows, it beomes inreasinglydiÆult to store the elements of O seen during the enumera-tion phase. While the enumeration phase an use streamingdisk in a breadth-�rst searh, this annot be done easilyfor the suborbit partitioning or the orbit ounting phases,whih must randomly look up elements. Therefore, an ap-proah known as landmark disovery [4, 7℄ is ommonly usedto allow O to �t in memory.In landmark disovery, a subset of the orbit elements aredelared to be landmarks and retained in memory. The non-landmarks are disarded. This leads to storing only 1=Lelements, where 1=L is the landmark ratio. Though thisredues the total storage, it requires additional work duringthe suborbit partitioning and orbit ounting phases.In the suborbit partitioning phase, if there exists at leastone landmark in eah suborbit then a breadth-�rst searhfrom that landmark over gensK an be used to produe thefull suborbit. Beause of this, the landmark ratio is typiallyseleted so that it is large enough to guarantee with highprobability that at least one landmark will be seen in eahsuborbit. Any missing suborbit an still be deteted andadded during the orbit ounting phase.In addition, in the orbit ounting phase, if the elementsin s : s 2 Si are not landmarks, then a breadth-�rst searhfrom the non-landmark elements over gensK must be per-formed until a landmark is found.
3.3 Predicted TimeGiven the use of landmark disovery using greasing forvetor-matrix multipliation, the runtime of a single on-densation an be predited. Those times are presented inthis setion.

3.3.1 Predicted Vector-Matrix Multiplication TimeWe found that by using greasing with a band size of 8, areasonable speedup using only a small amount of memorywas obtained:Mem Spae 782� d782=8e � 28b 20MBCPU Time d782=64e � d782=8eops 4:2� 10�7sMem Time d782=8e � d782=8eB 4:5� 10�6sBy using greasing and about 40 megabytes of extra spaeper mahine, a single vetor-matrix multipliation an besped up by a fator of eight as ompared to using the stan-dard method. Experimentally, we obtained a greasing timeloser to 2:0� 10�5s, and it is this time we will use for thepredited time of algorithm.
3.3.2 Predicted Sequential Time using LandmarksBreadth-�rst searh requires time proportional to the num-ber of elements in the searh and the branhing fator. Thisimplies a total of jOj � jgensGj vetor-matrix multiplia-tions for the orbit enumeration phase, and jOj � jgensK jvetor-matrix multipliations for the suborbit partitioningphase. The use of landmarks inreases the number of vetor-matrix multipliations in the orbit ounting phase from jOjto L� jOj. Given the time for vetor-matrix multipliationby greasing and the fat that both G and K have two gener-ators, this implies a total time of 25:8 CPU days on a singlemahine.
3.3.3 Predicted Parallel Time with Linear SpeedupThe predited running time for eah phase of the om-putation is shown below. These times assume omputationon a luster of 56 nodes with nearly linear parallel speedup.These times ompare losely to the experimental times forthe parallel disk-based algorithm found in Setion 4.5. Theexperimental time for orbit enumeration is notably largerthan the predited time. The predited time does not takeinto aount the time for dupliate detetion in large disk-based breadth-�rst searhes. More details on this an befound in [22℄.Phase TimeOrbit Enumeration 2 hoursSuborbit Partitioning 2 hoursOrbit Counting 7 hoursTotal 11 hours
4. DISTRIBUTED DISK-BASED

ALGORITHMWe present our distributed disk-based algorithms for theomputation of orbit ounting matries for G = Fi23. Inthe language of Setion 2, V has dimension 782 over GF (2).Choosing a suitable subgroup H = O+8 (2) : 2 < G thereindeed is a v 2 V suh that StabG(v) = H. Letting O = vGthis leads to jOj = 11; 739; 046; 176. Moreover, we hooseK = S6(2) : 2 < H, whih leads to k = 6; 486 suborbitsin O. These hoies are justi�ed in Setion 5.The luster we are using for this omputation has 56 nodes,eah with 4 gigabytes of loal memory and 10 gigabytes ofloal disk. Due to the orbit size, jOj = 11; 739; 046; 176, O istoo large to store in memory aross the luster and must usedistributed disk. Here a disk-based solution to this problemis presented in terms of the three phases of ondensationdisussed in Setion 3.1.

4.1 TerminologyBefore examining the algorithm itself, some ommon ter-minology must be onsidered.Owner of a Vetor Given the ompressed signature w ofa vetor w, a subset of the bits of that ompressedsignature are used to determine a unique node, N (w)in the omputation that is responsible for storing thatompressed signature. For a set of ompressed signa-tures, O, Pi(O) = fw 2 O : N (w) = ig is the set ofompressed signatures belonging to node i in O.Owner of a suborbit Given a set of ompressed signaturesW representing the values in a suborbit, a anonial or-dering for those ompressed signatures is hosen. Thesmallest C(W) 2 W is the anonial member of W .The owner of W , N (W) = N (C(W)) is the node own-ing the anonial member of W . It is responsible forstoring the information for that orbit. For a set ofsuborbits S, Pi(S) = fs 2 S : N (s) = ig is the set ofsuborbits belonging to node i in S.
4.2 Orbit EnumerationWe follow the general approah of [22℄ for orbit enumera-tion to produe O = vG. This approah uses a distributedhash array while performing a breadth �rst searh. Anyempty hash slot indiates a value has not been seen previ-ously. If the hash slot is not empty, either the value is adupliate or there has been a hash ollision. In this ase,the value is dropped from the frontier and plaed in a olli-sion queue. Values in the ollision queue are later heked todetermine where hash ollisions ourred by using externalsort and a streaming san through the values. This allowsdisk-based dupliate detetion to take plae using streamingaess only. After hash ollisions have been deteted, thesevalues are added to the frontier.Given the use of ompressed values, the amount of spaerequired by the entire searh is only 6:4 gigabytes per node.This �ts easily on distributed disk. The hash used for thisomputation required only 2 bits per entry, or 53 megabytesper node. This allows for a hash that �ts easily into dis-tributed memory. This hash is organized in suh a way thatfor all values w 2 O : w hashes to node i, N (w) = i, orevery value hashes to the node that owns it. This allowsthe messages that hek the distributed hash to double asthe messages that store values in the orbit on the node thatowns them.While the use ompressed values redues the amount ofspae required enough to �t the searh on disk, it also in-reases the number of vetor-matrix multipliations required.Those values disovered whose hash slots are empty areadded immediately to the frontier and are never stored intheir ompressed form in the ollision queue. However, thoseelements that have hash ollisions must later be added bakinto the frontier. In order to do this, their full values mustbe omputed. Fortunately, it is only a small perentage,around 22:5%, of the values for whih this must be done. Inaddition, many of the alulations an be bathed so thatvalue-generator pairs are not omputed multiple times forvalues that have similar paths.
4.3 Suborbit PartitioningSuborbit partitioning to form theK-suborbits an be viewedin terms of the ations of the nodes owning the data in ques-

tion on that data. This data inludes the initial orbit, O,the suborbits in S, and the landmarks in those suborbits, L.
4.3.1 Use of LandmarksSine O is distributed and disk-based, it is not possibleto quikly remove values from it as they are enountered.For this reason, instead of removing values from O, a list ofpreviously enountered values is maintained. Rather thanstoring all values, only landmark values are reorded in or-der to allow this list to �t in distributed RAM aross theluster. A landmark ratio of L = 7 was seleted, requir-ing 360 megabytes of landmark storage of ompressed sig-natures, by the node that owns them. It would have beenpossible to store all the values in their ompressed form inmemory, using 2.5 gigabytes of memory. However, beausethe luster is shared, using a smaller perentage of the totalmemory per node was preferable.Landmarks had to be seleted arefully. First, the portionof the ompressed signature that determined the owner of avetor had to be distint from the portion deiding whetheror not that vetor was a a landmark. Without this, alllandmarks would be owned by a subset of the nodes of theomputation.Also, it was known prior to the omputation that v wasa �xed point under K, and therefore would be in a suborbitby itself. Our landmark seletion was made in suh a waythat the v was always onsidered a landmark. Other miss-ing suborbits would be disovered during the orbit ountingphase, although this did not our in our omputation.
4.3.2 Processing the Orbit ValuesEah node n proesses a piee ofO orresponding to Pn(O).This is done in a manner similar to Algorithm 2. Now,however, rather than removing values in O, a list of knownlandmarks, Ln 2 O, owned by node n is stored. Algorithm 4shows how this is done.Algorithm 4: ppartitionOrbitInput: Pn(O); gensKfor eah ompressed signature w 2 Pn(O) doif isLandmark(w) and w 62 Ln thenw = buildV alue(v; path(w));s = disoverOrbit(w; gensK);s = ompress(s);s = stripNonlandmarks(s);s = sortCanonial(s);sendSuborbit(s; path(w));Eah loal landmark from Pn(O) is ompared with a list oflandmarks sent by other nodes, Ln. For eah loal landmarkthat has not been enountered previously, the suborbit forthat landmark needs to be built. Before this an be done, theompressed value needs to be expanded into its full value byfollowing the path assoiated with it from v in gensG. Onethe suborbit has been omputed loally, the values in it areompressed, non-landmarks are stripped, and it is sorted inanonial order. This plaes the anonial element for s,C(s), �rst. The suborbit along with the path to reah thatsuborbit are then sent to the node N (s).
4.3.3 Processing the SuborbitsWhen a node N (s) reeives a suborbit s it owns, it mustproess that suborbit. This is shown in Algorithm 5.

Algorithm 5: ppartitionSuborbitInput: s; pathif s 62 Pn(S) thenGet an original number id 2 f1; : : : ; kg;Store fpath; C(s); idg in Pn(S);s = sortOwner(s);sendLandmarks(s);
The suborbit is �rst heked to see if it is a dupliateby sanning through Pn(S), the suborbits in S owned bynode n = N (s), and looking at the anonial elements. Ifit has not been seen, it is proessed. It �rst gets a uniqueid 2 f1; : : : ; kg. This is obtained by requesting an id from aunique master node, who keeps trak of what ids have beenseen before. After this, the information for the suborbit isstored loally in Pn(S) and the values in the suborbit aresorted aording to their owners. For eah node n, the valuesPn(s) owned by the node n, along with the suborbit id, arethen sent to the owner n.

4.3.4 Processing the LandmarksWhen a node n reeives a set of landmarks it owns, it muststore those landmarks in Ln. This is shown in Algorithm 6.
Algorithm 6: ppartitionLandmarksInput: l; idl = sortCanonial(l);Add l to Ln(id);Eah node n stores Ln, an array of size k. Eah entry i inthat array, Ln(i), orresponds to the set of known landmarksin suborbit i owned by node n. These values are sortedanonially to allow for quik lookup.
4.3.5 Nearly Linear Speedup for

Parallel ImplementationThe parallel algorithm provides a nearly linear speedupompared to the sequential algorithm. Sine the only timethe same suborbit is generated multiple times is when mul-tiple nodes are produing the same suborbit simultaneously,this means at worst a slowdown fator of n = 56. However,sine k is relatively large in omparison to n, on average,eah suborbit is typially generated only one. Sine thesuborbits are proessed in parallel, this provides nearly lin-ear speedup.Eah suborbit is omputed only one on average. Thisimplies eah landmark l 2 Si is sent only twie, one toreah its suborbit's owner, N (Si), and a seond time toreah its owner, N (l). The bandwidth of the network issuÆient so that the bottlenek of the omputation is stillthe CPU-intensive vetor-matrix multipliation and not thesending of the data. The lateny of the network is not afator beause landmarks are sent out in large groups to thenodes that own them. At most k � 56 = 363; 261 messageswill be passed aross the network. Beause of the algorithmdesign, dupliation heks for individual landmarks are loalto the nodes that own those landmark and do not inur aommuniation penalty.Finally, the time for sort, binary searh, and hash lookupin the suborbit's breadth �rst searh are relatively small

when ompared to the vetor-matrix multipliation time.This implies a run time dominated by the time to performvetor-matrix multipliations in the breadth-�rst searh, justas in the sequential algorithm.
4.4 Orbit CountingOrbit ounting an also be viewed in terms of the ationsof the nodes owning the data in question on that data. Inthis ase, the data is the set of suborbits, S, and the land-marks of the neighboring values. For some ondensationelement , eah node n holds a piee of the resulting or-bit ounting matrix C() orresponding to the set of rowsfi : N (Si) = ng. The resulting data is ombined one theomputation �nishes.
4.4.1 InitializationIn order to speed up the proess of determining whih sub-orbits a large set of landmarks are in, the way in whih Lifor eah node i is stored is hanged. On the node n, ratherthan storing Ln = fLn(1); : : : ;Ln(k)g, Ln is stored as a sin-gle blok in whih eah entry orresponds to the ompressedsignature of a landmark along with the id of the suborbit ofthat landmark. These values are then sorted based on theanonial ordering of their ompressed signatures.
4.4.2 Processing the SuborbitsGiven some ondensation element , the subset Pn(S),orresponding to the set of suborbits owned by node n, areproessed aording to Algorithm 7.Algorithm 7: pondenseSuborbitsInput: Pn(S); let C() a distributed k � k all-zeros matrix forso 2 Pn(S) dow = buildV alue(v; path(so));i = id(so);s = disoverOrbit(w; gensK);s = s;s = findClosestLandmarks(s; gensK);s = sortOwner(s);sendLandmarks(s);for m 2 nodes doCi;�() = Ci;�() + reeiveCounts(m);Eah node proesses eah suborbit it owns. It rebuildsthat suborbit and then applies the ondensation element to eah element in the suborbit. After that, it must performa breadth-�rst searh for eah element in s in gensK to�nd the losest landmark (stored as a ompressed value).The ompressed values are sorted aording to the nodesthat own them and then are sent to those nodes. The resultreturned is the number of landmarks in eah suborbit ownedby that node. These results are added up to form Ci;�().
4.4.3 Processing the LandmarksWhen a node n reeives a set of landmarks it owns, it mustompute how many of those landmarks are in eah suborbit.This is shown in Algorithm 8.First the result res is initialized to an all zeros vetorof size k. The landmarks reeived are sorted in anonialorder. By sorting, a single pass through Ln is suÆient to�nd the ids of all landmarks in s. When an i = id(l 2 s) isenountered, resi is inremented.

Algorithm 8: pondenseLandmarksInput: sres = an all zeros row vetor of size k;sortCanonial(s);l = start of Ln;for s 2 S dowhile Ln(l) < s do inrement l;i = id(Ln(l));resi = resi + 1;sendCounts(res);
4.4.4 Nearly Linear Speedup for

Parallel ImplementationHere also there is a nearly linear speedup for orbit ount-ing when ompared to the sequential algorithm. Eah sub-orbit is proessed only one, as in the sequential algorithm.Eah value in a suborbit, upon projetion by , is proessedonly one to �nd the losest landmark in the generators ofgensK . This implies that the number of vetor-matrix mul-tipliations in the parallel algorithm is exatly the same asthe number in the serial algorithm.Eah suborbit is omputed only one. Here, though, avalue for eah ompressed signature in the suborbit mustbe passed aross the network. Let the amount of data sentaross the network in the suborbit partitioning phase beD, orbit ounting requires the sending of L � D=2 data.However, the same inrease in the number of vetor-matrixmultipliations must also be performed, meaning ratio oftime spent in the network and in performing vetor-matrixmultipliations is idential. As before, the bottlenek lieswith the vetor-matrix multipliations.Finally, L must be sanned k times to loate the ids forlandmarks. While this does add some time to the om-putation, it is still not signi�ant when ompared to thevetor-matrix multipliations.
4.5 Experimental ResultsWe used a luster of 56 omputers in the omputationof the orbit ounting matries. Eah omputer was an In-tel dual-proessor Xeon running at 3.20 GHz, running RedHat Linux 3.2.3 under Roks. The time for eah portion ofthe algorithm, as well as the total storage requirements, ispresented here.Phase Time Memory DiskOrbit Enumeration 18 hours 500 MB 8 GBSuborbit Partitioning 4 hours 800 MB 300 MBOrbit Counting 20 hours 800 MB 300 MBTotal 42 hours 800 MB 8 GBGiven the predited time on a single mahine with a land-mark ratio L = 7 of 25.8 CPU days, this would imply0.46 CPU days on 56 omputers, as shown in Setion 3.3.3.This is within a fator of four of the predited time. Thefator would be only two if not for the naive predited timefor the orbit enumeration phase from Setion 3.3.2.
5. THE BRAUER TREEWe show how the omputed orbit ounting matries areused to determine the missing labels of the verties of theBrauer tree of the prinipal 17-blok of the sporadi simpleFisher group Fi23. We were partiularly interested in thisexample for the following reason:

Table 1: The prinipal 17-blok of Fi23.i � �(1) �(e) 1GH1 1 1 1 12 3 3588 1 13 6 30888 8 34 13 789360 2 15 15 837200 0 06 16 837200 0 07 24 5533110 27 48 60 97976320 58 39 62 153014400 44 110 63 153014400 44 111 76 264536064 35 012 77 264536064 140 013 79 287721720 147 114 92 476702577 185 015 94 504627200 167 116 95 504627200 167 117 98 559458900 128 0
5.1 The Modular Atlas projectThe aim of the Modular Atlas projet [11, 24, 25℄, whihwas initiated two deades ago and is still running, is to deter-mine the p-modular deomposition matries and the Brauerharater tables of the groups listed in the Atlas [2℄. As far asthe bloks of yli defet are onerned, whih enompassthe ase where p divides the order of the group under on-sideration but p2 does not, the deomposition problem anbe rephrased as the problem of determining the assoiatedBrauer trees. For the sporadi groups and their automor-phism groups, a omprehensive olletion of Brauer treeshas been omputed in [10℄, but quite a few questions stillremain open.In partiular, for Fi23 the shape of the Brauer tree of itsprinipal 17-blok, and the labeling of its verties, up to fourpossible ases, have been determined in [10℄. Table 1 pro-vides the numbering of the irreduible ordinary haratersin the prinipal 17-blok, where their Atlas [2℄ numbers andtheir degrees are given in the seond and third olumns, re-spetively. The assoiated Brauer tree is as follows, wherefa; a0g = f9; 10g and fb; b0g = f15; 16g.

141213 4 211

5

6

871 3 17a a’b’b

ϕ ψ

The task now is to determine whih of these four asesatually ours. We apply an analysis similar to that usedin [5, 18℄.
5.2 The OrbitStandard generators gensG = fg1; g2g of G = Fi23, inthe sense of [26℄, are given in [24℄. The standard generatorsare given both in terms of the smallest faithful permutationrepresentation on 31; 671 points, and in terms of the small-est faithful matrix representation in harateristi 2, i.e. indimension 782 over GF (2).

We now look for a subgroup H < G suh that the sim-ple modules S' and S , a�ording the Brauer haraters 'and as indiated above, are modular onstituents of thepermutation module 1GH . We hoose a subgroupH = O+8 (2) : 2 < S8(2) < G;where both H = O+8 (2) : 2 < S8(2) and S8(2) < G aremaximal subgroups. Using the failities to ompute withlass funtions and to determine fusions of onjugay lassesavailable in GAP [8℄, we �nd the multipliities of the ordinaryirreduible haraters in the permutation harater 1GH asgiven in the �fth olumn of Table 1. These imply that S'and S are modular onstituents of 1GH .To apply a diret ondensation tehnique, the G-set un-derlying 1GH must be realized as a set of vetors in a suitablelinear representation of G. Atually, it turns out that in therepresentation spae V of dimension 782 over GF (2) thereis a (unique) vetor v suh that StabG(v) = H. This yieldsa manageable orbit O = vG � V .
5.3 The Condensation SubgroupIn general, given an FG-module M with Brauer hara-ter ', whih is extended arbitrarily to a lass funtion ~'on G, we have dimF (Me) = h'jK ; 1Ki = h ~'; 1GKiG, whereh�; �iG denotes the salar produt for lass funtions. Aseah Brauer harater an be written as a linear ombina-tion of ordinary haraters, these salar produts an bedetermined from ordinary haraters. If the blok underonsideration is desribed by a Brauer tree, these linear om-binations an diretly be read o� from the tree.Here, we hoose the ondensation subgroupK = S6(2) : 2 < H < G;a maximal subgroup of H. Using the failities to omputewith lass funtions available in GAP [8℄, we determine thedimensions �(e) = h�; 1GKiG of the ondensed modules ofthe ordinary irreduible haraters in the prinipal blok,as given in the fourth olumn of Table 1. In partiular,these dimensions imply that '(e) = 124 and (e) = 43.Hene the ondensed modules S'e and S e are onstituentsof (1GH)e, having the indiated dimensions. Similarly, we �ndk = dim((1GH)e) = h1GH ; 1GKiG = 6; 486. Thus the ondensedmodule has manageable dimension to be analyzed expliitlyusing MeatAxe [21℄ tehniques.
5.4 Determining the Brauer TreeWe speify = g2, the seond standard generator of G,and ompute the traes TrS'e(ee) and TrS e(ee) for thepossible ases [a; b℄ 2 f[9; 15℄; [10; 15℄; [9; 16℄; [10; 16℄g, usingthe formula TrMe(ee) = jKj�1 �Xg2KTrM (g);where the right hand side an be determined from the Brauerharater of M by p-modular redution, provided we knowthe ardinalities of the intersetions of the oset K withthe various onjugay lasses of G.To �nd those, we have to run through all jKj = 2; 903; 040elements of K, and to determine to whih onjugay lassof G it belongs. Conjugay testing is done using the permu-tation representation on 31; 671 points, the failities dealingwith permutation groups available in GAP [8℄, and somespeially tailored programs using yle strutures and lass

multipliation oeÆients. This needs about 100 CPU hourson a single mahine to be ompleted. (Parallelizing this aswell would of ourse be possible, but we have not pursuedthis further.)We do not reprodue the full lass distribution here, butjust note the following: The element to be ondensed mustbe hosen suh that the four ases an be distinguished bylooking at the above mentioned traes. Sine the ases yieldBrauer haraters whih only di�er on elements of orderdivisible by 13, this essentially boils down to a ondition onthe intersetions ofK with the onjugay lasses ontainingsuh elements. Here is the result for = g2:13A 43044 13B 4352626A 111166 26B 11178239A 67678 39B 66560Now this yields the following, where the entries are under-stood to be in GF (17):[a; b℄ [9; 15℄ [10; 15℄ [9; 16℄ [10; 16℄TrS'e(ee) 10 3 14 7TrS e(ee) 7 14 7 14
5.5 ConclusionWe use the subalgebra of the Heke algebra generated byfeg1e; eg2e; eg1g2eg, where gensG = fg1; g2g. By the teh-nique desribed in Setion 4, we determine the assoiatedorbit ounting matries, whih essentially desribe their a-tion on the ondensed permutation module (1GH)e.Using MeatAxe [21℄ tehniques, in partiular those to de-termine submodule strutures [13℄, it turns out that this sub-algebra already is suÆiently large to pik the onstituentsS'e and S e of (1GH)e. By inspetion, it is found thatTrS'e(ee) = 7 and TrS e(ee) = 14 for = g2, implyinga = 10 and b = 16, and we are done.
6. REFERENCES[1℄ Wieb Bosma, John Cannon, and Catherine Playoust.The magma algebra system i: The user language. J.Symboli Comput., 24:235{265, 1997.[2℄ J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker,and R.A. Wilson. Atlas of �nite groups. ClarendonPress, Oxford, 1985.[3℄ G. Cooperman. STAR/MPI: Binding a parallel libraryto interative symboli algebra systems. In Pro. ofInternational Symposium on Symboli and AlgebraiComputation (ISSAC '95), volume 249 of LetureNotes in Control and Information Sienes, pages126{132. ACM Press, 1995. software at URL:http://www.s.neu.edu/home/gene/software.html\#starmpi andhttp://www.s.neu.edu/home/gene/pargl.html.[4℄ G. Cooperman, L. Finkelstein, M. Tselman, andB. York. Construting permutation representations formatrix groups. J. Symboli Comput., 1997.[5℄ G. Cooperman, G. Hiss, K. Lux, and J. M�uller. TheBrauer tree of the prinipal 19-blok of the sporadisimple Thompson group. Experiment. Math.,6:293{300, 1997.[6℄ G. Cooperman and E. Robinson. Memory-based anddisk-based algorithms for very high degreepermutation groups. In Pro. of International

Symposium on Symboli and Algebrai Computation(ISSAC '03), pages 66{73. ACM Press, 2003.[7℄ G. Cooperman and M. Tselman. New sequential andparallel algorithms for generating high dimensionHeke algebras using the ondensation tehnique. InPro. of International Symposium on Symboli andAlgebrai Computation (ISSAC '96), pages 155{160.ACM Press, 1996.[8℄ The GAP Group. GAP | Groups, Algorithms, andProgramming, Version 4.4, 2006.http://www.gap-system.org.[9℄ J. Green. Polynomial Representations of GLn. LetureNotes in Mathematis 830. Springer-Verlag, 1980.[10℄ G. Hiss and K. Lux. Brauer Trees of Sporadi Groups.Oxford Univ. Press, Oxford, 1989.[11℄ C. Jansen, K. Lux, R. Parker, and R. Wilson. An Atlasof Brauer Charaters, volume 11 of London Math. So.Monographs, (N. S.). Clarendon Press, Oxford, 1995.[12℄ F. L�ubek and M. Neunh�o�er. Enumerating largeorbits and diret ondensation. Experiment. Math.,10:197{206, 2001.[13℄ K. Lux, J. M�uller, and M. Ringe. Peakwordondensation and submodule latties: An appliationof the MeatAxe. J. Symb. Comp., 17:529{544, 1994.[14℄ J. M�uller. Computational representation theory:remarks on ondensation. Leture Notes, 2003. http://www.math.rwth-aahen.de/~Juergen.Mueller/.[15℄ J. M�uller. On endomorphism rings and haratertables. Habilitationsshrift, RWTH Aahen, 2003.[16℄ J. M�uller. On the ation of the sporadi simple babymonster group on the osets of 21+22:Co2. Preprint,2006.[17℄ J. M�uller, M. Neunh�o�er, and F. Noeske. GAP-4pakage orb, 2006.http://www.math.rwth-aahen.de/~Max.Neunhoeffer/Computer/Software/Gap/orb.html.[18℄ J. M�uller, M. Neunh�o�er, F. R�ohr, and R. Wilson.Completing the Brauer trees for the sporadi simpleLyons group. LMS J. Comput. Math., 5:18{33, 2002.[19℄ J. M�uller, M. Neunh�o�er, and R. Wilson. Enumeratingbig orbits and an appliation: B ating on the osetsof Fi23. Preprint, to appear in J. Algebra, 2006. http://www.math.rwth-aahen.de/~Juergen.Mueller/.[20℄ R. Parker and R. Wilson. Unpublished, 1995.[21℄ M. Ringe. The C-MeatAxe, Version 2.4, Manual.RWTH Aahen, 2000.[22℄ E. Robinson and G. Cooperman. A parallelarhiteture for disk-based omputing over the BabyMonster and other large �nite simple groups. In Pro.of International Symposium on Symboli andAlgebrai Computation (ISSAC '06), pages 298{305.ACM Press, 2006.[23℄ J. Thakray. Modular representations of some �nitegroups. PhD thesis, Univ. of Cambridge, 1981.[24℄ R. Wilson. Atlas of �nite group representations.http://brauer.maths.qmul.a.uk/Atlas/v3/.[25℄ R. Wilson. The modular atlas homepage.http://www.math.rwth-aahen.de/homes/MOC/.[26℄ R. Wilson. Standard generators for sporadi simplegroups. J. Algebra, 184:505{515, 1996.

