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Abstract

We determine the character table of the endomorphism ring of the permu-
tation module associated with the multiplicity-free action of the sporadic
simple Baby Monster group B on its conjugacy class 2B, where the cen-
traliser of a 2B-element is a maximal subgroup of shape 21+22.Co2. This
is one of the first applications of a new general computational technique
to enumerate big orbits.
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1 Introduction

The aim of the present work is to determine the character table of the endo-
morphism ring of the permutation module associated with the multiplicity-free
action of the Baby Monster group B, i. e. the second largest of the sporadic
simple groups, on its conjugacy class 2B, where the centraliser of a 2B-element
is a maximal subgroup of shape 21+22.Co2. The final result is given in Table 4.

In general, the endomorphism ring of a permutation module reflects aspects of
the representation theory of the underlying group. Its character table in par-
ticular encodes information about the spectral properties of the orbital graphs
associated with the permutation action, such as distance-transitivity or distance-
regularity, see [14, 5], or the Ramanujan property, see [7]. Here multiplicity-free
actions, i. e. those whose associated endomorphism ring is commutative, have
been of particular interest; e. g. a distance-transitive graph necessarily is an
orbital graph associated with a multiplicity-free action.

The multiplicity-free permutation actions of the sporadic simple groups and the
related almost quasi-simple groups have been classified in [3, 16, 2], and the
associated character tables including the one presented here have been collected
in [4, 20]. In particular, the Baby Monster group B has exactly four multiplicity-
free actions. In order of increasing degree these are the actions on the cosets of
a maximal subgroup of shape 2.2E6(2).2, on the cosets of a subgroup of shape
2.2E6(2) which is of index 2 in 2.2E6(2).2, on the cosets of a maximal subgroup
of shape 21+22.Co2, and on the cosets of a maximal subgroup isomorphic to the
sporadic simple Fischer group Fi23.

The character tables associated with the first two B-actions have been deter-
mined in [10], while the remaining ones have already been computed in [21]. For
the B-action on the cosets of 21+22.Co2, the sizes of the (21+22.Co2)-orbits are
already given in [14], up to a typo we are going to correct first. Moreover, the
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intersection matrix of the shortest non-trivial (21+22.Co2)-orbit, given in Table
3, has been determined independently in [26, 27], using a ‘by hand’ strategy ex-
ploiting geometric arguments which yield a wealth of combinatorial data about
the associated orbital graph.

Here we pursue a computational strategy aiming straightforwardly at determin-
ing intersection matrices. Due to the sheer size of the permutation domains
underlying the larger two B-actions, a new general computational technique to
handle these has been devised in [21]. This technique has been elaborated and
analysed fully in [23], and has now been incorporated into the GAP [9] package
ORB [22]. Moreover, in [23] it is also reported on the computations concerned
with the B-action on the cosets of Fi23, and in particular on the relation of this
action to the conjugation action of the sporadic simple Monster group on its
6-transpositions. The aim of the present paper is to report on the computations
concerned with the B-action on the cosets of 21+22.Co2, completing the picture
for the multiplicity-free actions of B.

The present paper is organised as follows. In Section 2 we recall the necessary
facts about permutation modules, endomorphism rings and their character ta-
bles. In Section 3 we give a rough outline of the orbit enumeration technique
applied, in particular explaining which input data has to be provided. In Sec-
tion 4 we specify the data needed for the action of B on the cosets of 21+22.Co2,
and show how the results of orbit enumerations are actually used to determine
the character table associated with this action.

2 Endomorphism rings and their character tables

We recall the necessary facts about permutation modules and their endomor-
phism rings; as general references see [32, 1].

(2.1) Let G be a finite group, let H ≤ G and let n := [G : H]. Let X 6= ∅
be a transitive G-set such that StabG(x1) = H, for some x1 ∈ X, hence we
have n = |X|. Let X =

∐r
i=1Xi be its decomposition into H-orbits, where

r ∈ N is called the rank of X. For all i ∈ {1, . . . , r} we choose xi ∈ Xi and
gi ∈ G such that x1gi = xi, where we assume g1 = 1 and X1 = {x1}, and we
let Hi := StabH(xi) ≤ H and ki := |Xi| = |H|

|Hi| .

For i ∈ {1, . . . , r}, the orbits Γi := [x1, xi]G ⊆ X×X of the diagonal action of G
on X ×X are called orbitals. If i∗ ∈ {1, . . . , r} is defined by Γi∗ = [xi, x1]G ⊆
X ×X, then Xi∗ ⊆ X is called the H-orbit paired to Xi; in particular we have
ki∗ = ki. Let Ai = [ai,x,y] ∈ {0, 1}n×n, with row index x ∈ X and column index
y ∈ X, be defined by ai,x,y = 1 if and only if [x, y] ∈ Γi.

Let ZX be the permutation ZG-module associated with the G-set X, and let
E := EndZG(ZX) be its endomorphism ring. By [28], see also [15, Ch.II.12], the
set {Ai; i ∈ {1, . . . , r}} ⊆ E is a basis of E, called its Schur basis. It can also be
considered as a basis of EC := E⊗ZC ∼= EndCG(CX), which is a split semisimple
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C-algebra. Moreover, E is commutative if and only if the permutation character
1GH ∈ ZIrr(G) associated with the G-set X is multiplicity-free, i. e. all the
constituents of 1GH occur with multiplicity 1, where Irr(G) denotes the set of
irreducible C-valued characters of G.

For i ∈ {1, . . . , r} let Pi = [ph,i,j ] ∈ Zr×r, with row index h ∈ {1, . . . , r} and
column index j ∈ {1, . . . , r}, be the representing matrix of Ai for its right regular
action on E, with respect to the Schur basis, i. e. we haveAhAi =

∑r
j=1 ph,i,jAj .

Hence E → Z
r×r : Ai 7→ Pi, for i ∈ {1, . . . , r}, is a faithful representation of

E. The matrices Pi, whose entries are given as ph,i,j = |Xh ∩Xi∗gj | ∈ N0, are
called intersection matrices.

The first row and the first column of Pi are given as p1,i,j = δi,j and ph,i,1 =
khδh,i∗ , where δ·,· ∈ {0, 1} denotes the Kronecker function, and the column sums
of Pi are given as

∑r
h=1 ph,i,j =

∑r
h=1 |Xh ∩Xi∗gj | = ki, for all j ∈ {1, . . . , r}.

Moreover, we have kj · |Xh ∩ Xi∗gj | = kh · |Xj ∩ Xigh|, implying kjph,i,j =
khpj,i∗,h. Thus from

∑r
j=1 |Xj ∩Xigh| = ki depending on h ∈ {1, . . . , r} we get

the weighted row sums of Pi as
∑r
j=1 kjph,i,j = khki.

(2.2) From now on suppose E is commutative. Letting Irr(E) be the set
of irreducible C-valued characters of EC, we have |Irr(E)| = r, and λ(A1) =
1 for all λ ∈ Irr(E). The character table of E is defined as the matrix
ΦE := [λ(Ai)] ∈ Cr×r, with row index λ ∈ Irr(E) and column index i ∈
{1, . . . , r}; hence in particular ΦE is invertible. There is a natural bijection,
called the Fitting correspondence, between Irr(E) and the constituents of
1GH ; the Fitting correspondent of λ ∈ Irr(E) is denoted by χλ ∈ Irr(G). We
have n

χλ(1) =
∑r
i=1

||λ(Ai)||2
ki

, where || · || denotes the complex absolute value; thus
degrees of Fitting correspondents are easily computed from ΦE .

Let Q ⊆ K be the algebraic number field generated by the character values
{χλ(g) ∈ C;λ ∈ Irr(E), g ∈ G}. Hence by [8, La.IV.9.1] the χλ are realisable
over K. Thus by Schur’s Lemma the Ai ∈ E are simultaneously diagonalisable
over K. Hence K is a splitting field of E, the eigenvalues of Ai are the character
values λ(Ai), which are algebraic integers in K, and we have ΦE ∈ Kr×r.

The character table ΦE and the intersection matrices Pi are related as follows. If
ΦE is given, we have Pi = Φtr

E ·diag[λ(Ai);λ ∈ Irr(E)]·Φ−tr
E , where diag[·] ∈ Cr×r

denotes the diagonal matrix having the indicated entries. Hence the Pi are
easily computed from ΦE . Conversely, if all the Pi are given, the set of rows
{[λ(A1), . . . , λ(Ar)] ∈ Cr;λ ∈ Irr(E)} of ΦE is the unique basis of Cr consisting
of simultaneous row eigenvectors of all the P tr

i ∈ Cr×r and being normalised
to have 1 as their first entry. Hence ΦE can already be determined from a
subset of the P tr

i , as soon as the associated set of simultaneous normalised
row eigenvectors is uniquely determined. Actually, we will pursue the extreme
strategy to compute ΦE from a single non-identity intersection matrix.
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3 Enumeration of big orbits

To handle a finite G-set X, where G is a finite group acting from the right,
using standard orbit enumeration techniques, see e. g. [11], every point in X
eventually has to be stored. If X is too big to be stored completely, this is no
longer feasible. We give a rough outline of the new orbit enumeration technique
remedying this; for more details see [21, 23, 22].

(3.1) The basic idea, invented independently in [24, 17], is not to store single
points in X, but to enumerate X by enumerating the U -orbits contained in
X, where U ≤ G is a suitable helper subgroup, and only storing suitable
representatives of each U -orbit. To this end, let Y be another finite U -set
admitting a homomorphism of U -sets : X → Y . The most common case for
this setting is that X ⊆ M , where M is an FG-module for some field F , such
that there is an FU -module homomorphism π : MU → M ′, where MU is the
restriction of M to U and M ′ is a suitable FU -module, such that we may let
Y := Xπ ⊆M ′ and let be the restriction of π to X ⊆M .

Now, for any U -orbit in Y we arbitrarily designate a U-minimal point in it,
and a point x ∈ X is called U-minimal if x ∈ Y is U -minimal. To enumerate X
we only store the U -minimal points in X. More precisely, to perform an orbit-
stabiliser algorithm for a G-orbit x1G ⊆ X, in a way eventually facilitating
iteration in (3.2), we devise the following procedures. For any point x ∈ X
the procedure MinimaliserU (·) computes an element u ∈ U such that xu ∈ X is
U -minimal, and for any U -minimal point x ∈ X the procedure BarStabiliserU (·)
computes StabU (x) ≤ U and its order. These are used as follows.

Given a point x′ ∈ X, applying u := MinimaliserU (x′) ∈ U yields the U -minimal
point x := x′u ∈ X. Hence by looking up whether x has already been stored,
we decide whether the U -orbit xU = x′U ⊆ X has been encountered earlier. If
xU is a new U -orbit, the U -minimal points in xU and the stabiliser StabU (x) ≤
U are computed by a standard orbit-stabiliser algorithm using StabU (x) =
BarStabiliserU (x) ≤ U . If xU has been touched upon before, we collect a Schreier
generator of StabG(x1) ≤ G.

To perform this we assume that orders of subgroups of G, given by sets of gener-
ators, can be determined, e. g. by using a suitable permutation representation
of G. Moreover, the StabU (x)-orbits occurring have to be small enough to be
enumerable by a standard orbit-stabiliser algorithm.

The helper subgroup U ≤ G is chosen optimally if it only has regular orbits in
Y . In this case, storing only the U -minimal points in X, compared to storing all
points in X, yields a memory saving factor of ∼ |U |, and since for enumeration
the generators of G essentially have to be applied to the U -minimal points only
we also get a time saving factor of ∼ |U |; moreover, we have StabU (x) = {1}
for all x ∈ X, hence the StabU (x)-orbits in X are as small as possible anyway.

Typically Y cannot be chosen to consist of regular U -orbits only, but just to



5

have many U -orbits yU ⊆ Y such that |StabU (y)| is small. These U -sets in
practice turn out to be very effective as well, in particular if we are content
with enumerating only the usually large part of X consisting of those U -orbits
xU ⊆ X such that |StabU (x)| is small.

(3.2) The idea in [21, 23] now is to iterate the helper subgroup trick. Let
V ≤ U ≤ G be helper subgroups, such that the index [U : V ] is small enough
such that a left transversal L of V in U can be computed explicitly. Moreover,
let Z be a V -set, let ˜: Y → Z be a homomorphism of V -sets, and assume that
we already given procedures MinimaliserV (·) and BarStabiliserV (·) with respect
to the map ˜.
Hence the U -orbits in Y can be enumerated by V -orbits, and we have a notion
of V -minimal points in Y . For any U -orbit in Y we designate a U-minimal
point y ∈ Y amongst the V -minimal points in it, and still a point x ∈ X is
called U-minimal if x ∈ Y is U -minimal. Moreover, for any V -minimal point
y′ ∈ yU \ yV we store an element u ∈ L ⊆ U such that y′u ∈ yV ⊆ Y , and
for any V -minimal point y′ ∈ yV ⊆ Y we store an element v ∈ StabV (ỹ) =
BarStabiliserV (y) ≤ V such that y′v = y ∈ Y is the U -minimal point in yU .
With these preparations done, we are able to devise procedures MinimaliserU (x)
and BarStabiliserU (x) with respect to the map .

Given a point x ∈ X, let xU = yU ⊆ Y , where y ∈ Y is the U -minimal point
in yU . Let v′ := MinimaliserV (x) ∈ V , hence y′ := xv′ ∈ yU ⊆ Y is V -minimal.
Thus we have stored an element u ∈ L ⊆ U such that y′′ := y′u ∈ yV ⊆ Y .
Let v′′ := MinimaliserV (y′′) ∈ V , hence y′′′ := y′′v′′ ∈ yV ⊆ Y is V -minimal.
Thus we have stored an element v ∈ StabV (ỹ′′′) = BarStabiliserV (y′′′) ≤ V such
that y′′′v = y ∈ Y . Hence in conclusion we have xv′uv′′v = y ∈ Y being U -
minimal, and we let MinimaliserU (x) := v′uv′′v ∈ U . Finally, if x ∈ X already
is U -minimal, then y := x ∈ Y is U -minimal as well, hence BarStabiliserU (x) =
StabU (y) ≤ U is found by enumerating the U -orbit yU ⊆ Y by V -orbits.

(3.3) Hence this may be iterated along chains {1} =: U0 ≤ U1 ≤ U2 ≤ · · · ≤
Uk ≤ Uk+1 := G of helper subgroups, for some k ∈ N, admitting Ui-sets Yi
and homomorphisms of Ui-sets Yi+1 → Yi, for i ∈ {1, . . . , k}, where we let
Yk+1 := X. Here, while [G : Uk] is allowed to be arbitrary, we assume that
all the indices [Ui : Ui−1], for i ∈ {1, . . . , k}, are small enough such that left
transversals of Ui−1 in Ui can be computed explicitly.

Letting Y0 be the singleton U0-set, each point in Y1 is U0-minimal anyway, and
MinimaliserU0(·) and BarStabiliserU0(·) are trivial procedures always returning
1 ∈ U0 and {1} ≤ U0, respectively. Hence we may proceed by induction along
the subgroup chain as described in (3.2). Again the most common case is that
Yi ⊆Mi, for i ∈ {1, . . . , k+1}, where Mi is an FUi-module for some field F , such
that the homomorphisms of Ui-sets Yi+1 → Yi are restrictions of FUi-module
homomorphisms πi : (Mi+1)Ui →Mi.
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Table 1: Conjugacy classes in G and H-orbits.

i C kC splits into dimF2(FixM (·))
1 1A 1

2, 3 2B 7 379 550 93 150 + 7 286 400 2 322
4 2D 262 310 400 2 202
6 3A 9 646 899 200
5 4B 4 196 966 400 1 256
8 4E 537 211 699 200 1 114
7 4G 470 060 236 800 1 166
9 5A 4 000 762 036 224

10 6C 6 685 301 145 600

Note that, e. g. if we already know the sizes of the G-orbits in X, we might
want to restrict ourselves to a simple orbit algorithm for the G-set X without
determining stabilisers in G. In this case, stabiliser computations only take place
in Uk, hence we only have to be able to determine orders of subgroups of Uk,
which can be done e. g. by specifying a suitable permutation representation of
Uk only, or just by sifting through the subgroup chain using the left transversals
available anyway.

4 Determining the character table

We are now prepared to consider the action of the Baby Monster group B on
the cosets of 21+22.Co2. The group theoretical and representation theoretic data
concerning the groups involved is available in [6] and [13], and also accessible
in the character table library of GAP. Computations with characters and with
permutation and matrix representations are done with GAP and the MeatAxe
[25], in particular we make use of the algorithms to compute submodule lattices
described in [18], and those to compute socle series described in [19].

(4.1) From now on let G = B and 21+22.Co2
∼= H < G, and let X be the

set of right cosets of H in G. We have |X| = 11 707 448 673 375 ∼ 1.1 · 1013,
and by [3] the permutation character 1GH it is multiplicity-free of rank r = 10,
its constituents have pairwise distinct degrees and hence are Q-valued. The
H-orbit sizes ki, for i ∈ {1, . . . , 10}, are stated without explicit proof in [14],
where unfortunately the values given there do not sum up to |X|. Hence we
just compute the ki anew.

Using the notation in [6], let 2B ⊆ G denote the associated conjugacy class in G,
and picking c ∈ 2B suitably we have H = CG(c). Hence the conjugation action
of G on 2B is equivalent to its action on X. For any conjugacy class C ⊆ G in G
let (2B)C := {d ∈ 2B; cd ∈ C}. Hence (2B)C ⊆ 2B is a union of H-orbits with
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Table 2: The subgroup chain.

i Ui |Ui| [Ui : Ui−1]

5 B 4 154 781 481 226 426 191 177 580 544 000 000 ∼ 1.1 · 1013

4 21+22.Co2 354 883 595 661 213 696 000 ∼ 3.9 · 1011

3 211.M22 908 328 960 1 024
2 2.M22 887 040 1 344
1 L2(11) 660 660

respect to the conjugation action. We have kC := |(2B)C | = |C|·m2B,2B,C
|2B| ∈ N0,

where m2B,2B,C := |{(c, d) ∈ 2B × 2B; cd = e}| ∈ N0 is the corresponding class
multiplication coefficient and e ∈ C is fixed. The class multiplication coefficients
are easily determined from the character table of G, and we find kC 6= 0 precisely
for the conjugacy classes C ∈ {1A, 2B, 2D, 3A, 4B, 4E, 4G, 5A, 6C}, where the
associated sizes kC are given in Table 1.

As we have r = 10, but only find nine conjugacy classes C ⊆ G such that
kC 6= 0, we conclude that precisely one of the non-empty sets (2B)C ⊆ 2B
consists of two H-orbits, while the others each consist of a single H-orbit. As
k2B is the only of the kC 6= 0 not dividing |H|, we conclude that (2B)2B splits
into two H-orbits. The sizes of the latter are also indicated in Table 1, and are
determined in (4.4). After all, it turns out that in [14] the value of k7 = k4G is
erroneously stated as ‘4 700 602 368’, obviously just a typo.

(4.2) In order to to place ourselves into the situation described in Section 3, we
look for an FG-module containing an H-invariant but not G-invariant vector.
Let F2 be the field of order 2, and let M be the absolutely irreducible F2G-
module of dimension 4370; by [12] this is the smallest faithful representation of
G over fields of characteristic 2. Representing matrices for standard generators
of G, in the sense of [29], have been constructed in [30] and are available in
[31], where also words in the standard generators giving generators for H are
available. Using a random search, from the latter we find generators of H being
preimages of standard generators of the sporadic simple Conway group Co2,
with respect to the natural epimorphism H → Co2.

We find that the subspace FixH(M) ≤M , consisting of the vectors fixed by H,
is 1-dimensional. Thus picking the non-trivial vector 0 6= x1 ∈ FixH(M), the
G-orbit x1G ⊆M is as a G-set equivalent to X, and hence we may identify x1G
and X. Note that to store a vector in M we need d 4370

8 e = 547 Bytes, thus to
store all of X we would need 6 403 974 424 336 125 ∼ 6.4 · 1015 Bytes. Hence we
are indeed tempted to apply a better strategy.
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(4.3) We choose the following chain of subgroups, see Table 2:

G = B > H = 21+22.Co2 > U3 := 211.M22 > U2 := 2.M22 > U1 := L2(11).

Generators of Ui, for i ∈ {1, . . . , 3}, are found as follows. Words in the stan-
dard generators of Co2 giving standard generators of the maximal subgroup
M23 < Co2, and words in the latter giving standard generators of the maximal
subgroup M22 < M23 are available in [31]. Applying these to the chosen gen-
erators of H indeed yields a subgroup 21+22.M22 < H. Let 21+22 ∼= N EH be
the maximal normal 2-subgroup of H. Hence N is an extraspecial group, and
Co2 acts absolutely irreducibly on the F2-vector space N/Z(N) of dimension
22. It turns out that (N/Z(N))M22 is an uniserial F2M22-module with ascend-
ing composition series [1a, 10a, 10b, 1a], where the constituents are absolutely
irreducible F2M22-modules having the indicated dimensions.

By a random search we find a subgroup U3 := 211.M22 < 21+22.M22, whose
maximal normal 2-subgroup is as an F2M22-module isomorphic to the unique
submodule of (N/Z(N))M22 of dimension 11. Similarly, we find a subgroup
U2 := 2.M22 < 211.M22 = U3, being a non-split central extension of M22.
Finally, words in the standard generators of M22 giving standard generators of
the maximal subgroup L2(11) < M22 are available in [31], and applying these
straightforwardly yields a subgroup U1 := L2(11) < 2.M22 = U2.

To specify F2Ui-modules Mi, for i ∈ {1, . . . , 3}, we proceed as follows. Let
M4 := M be the absolutely irreducible F2G-module of dimension 4370. Let-
ting rad5(MU3) < MU3 be the fifth layer of the radical series of the restriction
MU3 of M to F2U3, we first find a suitable quotient M3 of MU3/rad5(MU3) of
dimension 78. It is easy then to find suitable quotients M2 of (M3)U2 , and M1

of (M2)U1 , having dimensions 31 and 21, respectively. The associated F2Ui-
homomorphisms πi : (Mi+1)Ui →Mi are just the natural maps.

(4.4) To find H-orbit representatives xi ∈ Xi ⊆ X and elements gi ∈ G such
that xi = x1gi, for i ∈ {2, . . . , 10}, we use the G-set 2B ⊆ G equivalent to
X. By a random search we pick a few elements g ∈ G, and check to which
conjugacy class in G the commutator [c, g] := c · (g−1cg) ∈ G belongs, where
c ∈ 2B is as chosen in (4.1). This is done by computing the order of [c, g] ∈ G,
and the dimension of the subspace FixM ([c, g]) ≤ M , consisting of the vectors
fixed by [c, g]; the relevant dimensions are given in Table 1. This yields suitable
elements gi ∈ G for i 6∈ {3, 5}; in particular we are lucky to find a representative
for the small H-orbit X4 ⊆ X already at this stage. Summing up the ki for
i 6∈ {3, 5}, and dividing by |X|, we obtain a fraction of ∼ 9996

10000 . Hence it is
rather improbable to find further H-orbits in X by a random search.

To proceed we concentrate on X2 ⊆ X. If we had k2 = 93150, then there
might be an element d ∈ (2B)2B ∩ N , where N E H is as in (4.3), such
that CH(d) = 21+21.(210 : M22 : 2) < H, where 210 : M22 : 2 < Co2 is a max-
imal subgroup and CH(d) ∩ N = 21+21. Words in the standard generators
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of Co2 giving generators of 210 : M22 : 2 < Co2 are available in [31], and it
turns out that (N/Z(N))210 : M22 : 2 is uniserial with ascending composition se-
ries [1a, 10a, 10b, 1a]. Applying these words to the chosen generators of H indeed
yields a subgroup 21+21.(210 : M22 : 2) < H, where the normal subgroup 21+21

is a preimage of the unique submodule of (N/Z(N))210 : M22 : 2 of dimension 21,
with respect to the natural epimorphism N → N/Z(N).

Indeed we find a vector 0 6= x2 ∈ FixM (21+21.(210 : M22 : 2)) such that x2 6=
x1. Since |x2H| | [H : (21+21.(210 : M22 : 2))] = 93150, it is straightforward to
enumerate x2H ⊆ M completely by a standard orbit algorithm, which shows
|x2H| = 93150. Moreover, by applying a few random elements of G we find
a point in x2G ⊆ M being in an H-orbit in X we have encountered earlier,
showing that indeed x2 ∈ X ⊆M , and hence X2 := x2H ⊆ X. This also yields
g2 ∈ G such that x1g2 = x2, and proves that k2 = 93150 and k3 = 7286400, as
asserted in Table 1. Finally, by checking a few random points in X2g2 ⊆ X, we
find representatives of the H-orbits X3 ⊆ X and X5 ⊆ X.

(4.5) Since X1 = {x1} and X2 ⊆ X has already been enumerated explic-
itly, we consider the H-orbits Xi ⊆ X for i ∈ {3, . . . , 10}. It turns out that
(X3

.
∪ X4)π3 = {0} ⊆M3, hence for all x ∈ X3

.
∪ X4 we have StabU3(xπ3) = U3,

rendering orbit enumeration by U3-orbits ineffective. Hence we do not enumer-
ate X3 ⊆ X and X4 ⊆ X at all, and provide an alternative treatment in (4.6).
But for i ∈ {5, . . . , 10} we are prepared to apply the strategy described in (3.3)
to enumerate a substantial part of Xi ⊆ X.

E. g. for the largest H-orbit X10 ⊆ X, where k10 = 6 685 301 145 600 ∼ 6.7·1012,
we enumerate 2 000 251 387 904 ∼ 2 · 1012 points, hence a fraction of ∼ 3

10 of
the whole of X10. These points are comprised into 2603 U3-orbits, having a
total of 4305 U3-minimal points, hence we obtain a memory saving factor of
∼ 464 634 468 ∼ 4.6 · 108, which indeed is of the same order of magnitude as
|U3| = 908 328 960 ∼ 9.1 · 108. Here, we just ignore those U3-orbits xU3 ⊆ X10

such that |StabU3(xπ3)| ≥ 500. To do this using the GAP package ORB we
need ∼ 1.3 · 109 Bytes of memory space and ∼ 7000 s of CPU time on a 3 GHz
Pentium IV processor, where both figures include the time and space required
to enumerate the appropriate parts of the helper sets Mi, for i ∈ {1, . . . , 3}.

(4.6) Having the H-orbits Xi ⊆ X under control, the aim now is to compute
the intersection matrix P2 = [ph,2,j ] ∈ Z10×10 for the smallest non-trivial H-
orbit X2 ⊆ X, having size k2 = 93150. Since it is the only H-orbit having this
size X2 is self-paired, hence we have ph,2,j = |X2gj ∩ Xh|. Since we are done
for j = 1 anyway, for all j ∈ {2, . . . , 10} we compute X2gj ⊆ X explicitly, and
determine which H-orbits Xh ⊆ X, for h ∈ {1, . . . , 10}, the various points in
X2gj belong to. This is straightforward for h ∈ {1, 2}, and for h ∈ {5, . . . , 10}
we proceed as follows.

As we have enumerated only parts but not all of the H-orbits Xh, we not only
test a given point x ∈ X2gj for membership in Xh, but do the same with several
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Table 3: Intersection matrix P2 of B on 21+22.Co2.

i ki 1 2 3 4
1 1 . 1 . .
2 93 150 93150 925 63 15
3 7 286 400 . 4928 63 120
4 262 310 400 . 42240 4320 1815
5 4 196 966 400 . 45056 24192 6720
6 9 646 899 200 . . . .
7 470 060 236 800 . . 64512 53760
8 537 211 699 200 . . . 30720
9 4 000 762 036 224 . . . .

10 6 685 301 145 600 . . . .

5 6 7 8 9 10
. . . . . .
1 . . . . .

42 . 1 . . .
420 . 30 15 . .

1807 891 272 120 . 27
2048 891 512 . 100 36

30464 24948 10287 5040 3850 3060
15360 . 5760 3495 4125 4320

. 41472 32768 30720 31175 32256
43008 24948 43520 53760 53900 53451

points in xH ⊆ X. Still, this only allows to prove membership of x in a given
Xh, but not to disprove it. Hence we let h ∈ {5, . . . , 10} vary, and in a first
run we test a very few points in xH ⊆ X, at most 5 say, for membership in the
various H-orbits Xh. If x cannot be proven to belong to a particular H-orbit, we
launch a second run where we test some more points in xH ⊆ X, at most 1000
say. Now this is done for all x ∈ X2gj , and it turns out that after the second run
only a very few points have not been proven to belong to a particular H-orbit,
of course in particular including those which actually belong to X3

.
∪ X4 ⊆ X.

We could repeat this further by testing even more points, but instead we note
that we have already found good lower bounds for the matrix entries ph,2,j ∈ N0.
Now we have the weighted rows sums

∑10
j=1 kjph,2,j = k2kh, and the integral-

ity conditions kjph,2,j = khpj,2,h, which in particular imply that ph,2,j = 0
if and only if pj,2,h = 0. It turns out that these conditions are sufficient
to find all the matrix entries ph,2,j ∈ N0, for h, j ∈ {1, . . . , 10} such that
[h, j] 6∈ {[3, 3], [3, 4], [4, 3], [4, 4]}. The result is given in Table 3, where the as yet
unknown entries are indicated in bold face.

Actually, there are only a very few possibilities for the unknown entries left,
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Table 4: Character table of B on 21+22.Co2.

λ χλ 1 2 3 4 5
1 1 1 93150 7286400 262310400 4196966400
2 96 255 1 −2025 772200 −5702400 42768000
3 9 458 750 1 10287 215424 3777840 25974432
4 347 643 114 1 −2025 99000 356400 −5702400
5 4 275 362 520 1 495 48960 −334800 1631520
6 9 287 037 474 1 3375 28800 356400 1015200
7 536 105 794 455 1 1095 1560 7200 −113280
8 635 966 233 056 1 −425 9400 −3600 −57600
9 4 375 623 425 250 1 135 −360 −12960 17280

10 6 145 833 622 500 1 −153 −936 8640 1152
ϕ1 1 −2025 107129 283239 −5117112
ϕ2 0 0 11 −99 792

6 7 8 9 10
9646899200 470060236800 537211699200 4000762036224 6685301145600
290816000 −2714342400 5474304000 8833204224 −11921817600
35514368 607533696 100362240 −42467328 −730920960
8806400 0 45619200 −191102976 141926400
2769920 −9636480 −12441600 −2359296 20321280
−870400 −6652800 4147200 −14155776 16128000

81920 107520 −921600 2555904 −1720320
−115200 358400 −76800 1409024 −1523200
−40960 138240 414720 −884736 368640

32768 −129024 −207360 294912 0
12211712 −32776128 111171456 −82132992 −3745280

4608 −44352 88704 147456 −197120

which can be checked using the following additional necessary condition. Since
all the constituents of 1GH are Q-valued, the field Q is a splitting field of the
associated endomorphism ring E, and hence in particular the characteristic
polynomial of P2 splits into linear factors over Q. The latter condition turns
out to be fulfilled by precisely one of the possibilities left, thus completing P2.

(4.7) To conclude, we determine the row eigenspaces of P tr
2 ∈ Q10×10, and find

eight 1-dimensional and a single 2-dimensional one. Computing the degrees of
the Fitting correspondents associated with the 1-dimensional eigenspaces, by
the formula given in (2.2), we conclude that we have found Irr(E) \ {λ2, λ4},
using the notation in Table 4, where the degrees of the Fitting correspondents
and a basis {ϕ1, ϕ2} ⊆ Q10 of the 2-dimensional eigenspace of P tr

2 are given as
well.
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Finally, to determine the as yet unknown characters λ2 and λ4 we proceed as
follows. For j ∈ {2, 4} we have λj = ϕ1 + xjϕ2, for some xj ∈ Z. The formula
for the degrees of Fitting correspondents, applied to ϕ1 +X ·ϕ2 ∈ Q[X]10, leads
to the quadratic equation

11707448673375
χλj (1)

=
9563

294400
·X2 +

6905057
147200

·X +
14897519123

294400

having xj ∈ Z as one of its solutions. Since the degrees of the Fitting corre-
spondents are χλ2(1) = 96255 and χλ4(1) = 347643114, this yields

x2 ∈ {
−591998657

9563
, 60461} and x4 ∈ {

−6743057
9563

,−739}.

Hence we have λ2 = ϕ1 + 60461 · ϕ2 and λ4 = ϕ1 − 739 · ϕ2, and we are done.
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