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Abstract

We verify Broué’s conjecture for the faithful 3-blocks of defect 2 of the
non-split central extension of the sporadic simple Mathieu group M22 by a
cyclic group of order 4. The proof is based on a strategy due to Okuyama
and Rickard, where a stable equivalence is lifted to a derived equivalence.
The stable equivalence in turn is provided by exploiting a result due to
Puig. To handle this particular example, next to theoretical investigations
we apply a whole bunch of computational tools.
Mathematics Subject Classification: 20C20, 20C40, 16G10, 18E30.

1 Introduction

Broué’s abelian defect group conjecture [2] says that the principal p-block of a
finite group is derived equivalent to its Brauer correspondent, which is a p-block
of the normaliser of a p-Sylow subgroup, provided the latter is abelian. One of
the central techniques for proving instances of the conjecture involves finding
a stable equivalence between the respective module categories, and lifting it to
a derived equivalence, see e. g. [15, 21], where in many cases the appropriate
stable equivalence is simply restriction. In particular, building on work of several
authors it is shown in [9] that Broué’s conjecture holds for principal 3-blocks in
the case of elementary abelian 3-Sylow subgroups of order 9.

Broué’s conjecture is believed to hold for non-principal p-blocks as well, again
provided the associated defect group is abelian [2, Question 6.2]. Here too
stable equivalences are important, but currently there is a dearth of methods to
establish a stable equivalence in the non-principal p-block case. In the present
work we prove the following

Theorem. Let 4.M22 be the non-split central extension of the sporadic simple
Mathieu group M22 by a cyclic group of order 4. Then Broué’s conjecture holds
for the faithful 3-blocks of defect 2 of 4.M22.

The associated defect groups are the 3-Sylow subgroups of 4.M22, being elemen-
tary abelian of order 9. According to the catalogue [24] of 3-blocks of abelian
defect group occurring in the Atlas [3] groups, there are no other 3-blocks Morita
equivalent to these blocks among the Atlas groups and their subgroups. There
are a few special features to this example, and it is treated here by method
which has not yet, to our knowledge, been applied to the problem of verifying
Broué’s conjecture:

In Section 2 we consider a stable equivalence between the global and the lo-
cal block, which different from those 3-blocks which have been considered to
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date is not simply restriction, but requires multiplication by a suitable endo-
permutation module, using the construction in [17]. We construct this endo-
permutation module, using a computational technique involving tensor induc-
tion. This allows us to evaluate the functor providing the stable equivalence
explicitly for given modules.

Subsequently, in Section 3 we use the strategy in [21, Ch.6.3], which is a modifi-
cation of the strategy invented in [15], to lift the stable equivalence to a derived
equivalence: We use the results of evaluating the stable equivalence at simple
modules to find a tilting complex, whose endomorphism ring hence is derived
equivalent to the local block. Although the data in the catalogue [24] had in-
dicated that there should be a very simple tilting complex, being amongst the
elementary ones defined in [15], our tilting complex turns out to be a of a more
general type, it is a ‘mixed’ elementary tilting complex as defined in [23]. Having
the tilting complex in hands, we proceed to find complexes fulfilling the proper-
ties assumed in [21, La.5.2]. These are used to finally show that the global block
and the endomorphism ring of the tilting complex are Morita equivalent. We re-
mark that we could have used [21, Thm.6.1] directly, but it seemed worth-while
to make the tilting complex, which works behind the scenes anyway, explicit.

To arrive at the results presented here, at crucial points we make heavy use
of explicit computation, whose results are interspersed among our theoretical
investigations. For group theoretical computations, e. g. finding normalisers in
permutation groups, we use the facilities available in the computer algebra sys-
tem GAP [6], while for computations with characters and decomposition matrices
we use its character table library. For computations with matrix representations
over finite fields, e. g. finding constituents, Loewy series, endomorphism rings,
direct sum decompositions, or Green correspondents, we use the computer alge-
bra system MeatAxe [22], and in particular the tools in [11, 12, 13]. Moreover,
we use specially tailored GAP and MeatAxe programs, derived from the tools in
[14], for induction and tensor induction.

We remark that matrix computations are carried out over the field with 9 ele-
ments. But we have to make sure that these computational results are correctly
interpreted over the algebraically closed field we are using as the base field for
our theoretical considerations: The field with 9 elements is a splitting field for all
the relevant simple modules, thus a simple module being found by the MeatAxe
actually is absolutely simple. Moreover, indecomposable modules being found
by the MeatAxe are explicitly checked to be absolutely indecomposable.

We assume the reader to be familiar with the general notions of representa-
tion theory, in particular Brauer correspondence, vertex theory, pointed groups,
tilting theory and derived categories; as general references see e. g. [5, 25, 8].
Unless otherwise stated, we throughout consider left modules, write module
homomorphisms on the right, and use cochain complexes.

Acknowledgement. We wish to express our appreciation to Markus Linckel-
mann and Raphaël Rouquier for useful discussions.
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Table 1: Decomposition matrices of B+ and b+.

56a 56b 64 160a 160b
56a 1 . . . .
56b . 1 . . .

160a . . . 1 .
160b . . . . 1
176 1 1 1 . .
560 1 1 2 1 1

1a 1b 2 1c 1d
1a 1 . . . .
1b . 1 . . .
1c . . . 1 .
1d . . . . 1
2 . . 1 . .
8 1 1 2 1 1

2 The stable equivalence

(2.1) The faithful 3-blocks of 4.M22. Let k be an algebraically closed field
of characteristic 3. Let ζ ∈ k be a primitive 8-th root of unity, hence ι := ζ2 is a
primitive 4-th roots of unity. For the necessary facts about the Mathieu group
M22 we refer the reader to the Atlas. Details are easily checked computationally
using GAP and a faithful permutation representation of 4.M22, e. g. the one on
4928 points available in [26].

The group M22 has Schur multiplier isomorphic to a cyclic group of order 12.
We consider the non-split central extension G := 4.M22 of M22 by a cyclic group
C4 of order 4; hence G has order 29 ·32 ·5 ·7 ·11, and elementary abelian 3-Sylow
subgroups. Let z ∈ G be an element of order 4 generating the centre Z := Z(G)
of G, and let : G→ G/Z ∼= M22 be the natural homomorphism.

The group algebra k[G] has four 3-blocks of defect 2. One is isomorphic to
the principal 3-block of M22, and one to the unique non-principal 3-block of
defect 2 of 2.M22. There remain two conjugate faithful 3-blocks B+ and B−, on
which z acts by scalar multiplication by ι and −ι, respectively. These blocks are
interchanged by the unique outer automorphism of G of order 2, and thus both
the associated (mutually isoclinic) extensions G.2 of G have a 3-block Morita
equivalent to B+ and B−.

The decomposition matrix of B+ is given in Table 1, and let its block idempotent
be denoted by e+ ∈ k[G]. Let D ∼= C3 ×C3 be the defect group of B+. Picking
two of its four non-trivial cyclic subgroups, D1 and D2 say, let D1 = 〈c〉 and
D2 = 〈d〉, and thus D = D1 ×D2 = 〈c, d〉; let D3 := 〈cd−1〉 and D4 := 〈cd〉.
The centraliser of D in G is given as CG(D) = D×Z. Hence CG(D) has four 3-
blocks, all by [25, Prop.49.11] being nilpotent, having defect group D, and being
isomorphic to k[D]. The block idempotent f+ of the Brauer correspondent
b+0 of B+ is simply the appropriate idempotent of k[Z], i. e. we have f+ =
1/4 · (1− ιz)(1− z2) ∈ k[CG(D)].

The normaliser NG(D) of D in G is a group of order 288 = 25 · 32, being
a semidirect product NG(D) = D : S, where S ∼= C4 : C8 is a non-abelian 2-
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Sylow subgroup of NG(D). Let S = 〈a, b〉, where a and b have order 8 and 4,
respectively, and where aba−1 = b−1. The action of S on D = 〈c, d〉 may be
given as matrices in GL2(3):

a 7→
[
. −1
1 .

]
, b 7→

[
−1 1
1 1

]
, ba 7→

[
1 1
1 −1

]
.

Note that we have aD1 = D2 as well as bD1 = D3 and baD1 = D4. For the
automiser E := NG(D)/DCG(D) = NG(D)/CG(D) we find

E = NG(D)/(D × Z) ∼= S/Z ∼= Q8,

the quaternion group of order 8. Hence we have E = 〈a, b〉 and Z = 〈b2a2〉CS,
but note that S ∼= Z ·E is a non-split central extension. As E ∼= Q8 acts faith-
fully on the elementary abelian group D, we conclude that E acts irreducibly
and thus regularly on D \ {1}. Thus NG(D)/Z ∼= D : E is a Frobenius group,
see [7, Ch.V.8]. Note that in particular b

2
= a2 ∈ Z(E) acts by inverting all

elements of D.

All the four 3-blocks of CG(D) are stable under the action of NG(D), thus we
have NG(D, f+) = NG(D), see [25, Prop.40.13]. The block idempotent of the
Brauer correspondent b+ of B+ is again f+ ∈ k[NG(D)]; the decomposition
matrix of b+ is given in Table 1. Since multiplication with f+ identifies the
subgroup Z < k[NG(D)]∗ with the group 〈ι〉 < k∗ of 4-th roots of unity, we
have

b+ = f+k[NG(D)]f+
∼= k ⊗k[Z] k[NG(D)] =: kZ [D : S]

as interior NG(D)-algebras, where k[Z] acts on the right on k via z 7→ ι. In the
computational setting it will be useful to identify b+ with kZ [D : S].

Note that we have kZ [D : S] ∼= k][D : E], where the latter is a twisted group
algebra in the sense of [25, Ex.10.4], and since E ∼= Q8 has trivial Schur multi-
plier H2(E,C∗) = {0}, see [7, Thm.V.25.3], which implies H2(E, k∗) = {0} as
well, we have

kZ [D : S] ∼= k[D : E].

This just reflects the fact that the non-trivial cohomology class in H2(E, 〈ι〉)
belonging to the central extension S ∼= Z ·E becomes trivial under the natural
map H2(E, 〈ι〉)→ H2(E, k∗).

(2.2) The centraliser CG(D1). In order to create an equivalence between the
stable module categories of B+ and b+ we first analyse the centraliser CG(D1)
of D1 in G; the same analysis of course holds for the other subgroups Di < D.
It turns out that

CG(D1) = D1 × 2.(2× (V4 : D2)),

where the right hand direct factor is a centrally amalgamated product of Z =
〈z〉 ∼= C4 and the special linear group SL2(3) ∼= Q8 : C3. Note that CG(D1) has
a normal 2-Sylow subgroup, thus CG(D1) is 3-nilpotent.
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Thus by [25, Prop.49.13] all six 3-blocks of k[CG(D1)] are nilpotent, and hence
by [25, Thm.49.15] each possesses a unique simple module. Two of these blocks,
corresponding to the 3-block of defect 0 of SL2(3), have defect 1 and defect
group D1. The other four blocks have defect 2, two of them correspond to
the non-faithful 3-blocks of SL2(3) and are isomorphic to k[D], the other two
correspond to the faithful 3-blocks and are isomorphic to the (2×2)-matrix
algebra M2(k[D]) over k[D], see [25, Cor.50.9]. Let b+1 be the faithful 3-block
of CG(D1) on which z acts by scalar multiplication by ι; note that hence B+ is
its Brauer correspondent.

To make the simple b+1 -module V explicit, we consider the faithful natural 2-
dimensional representation ρ : SL2(3)→M2(k). We may choose elements f, g ∈
SL2(3) of order 4 such that 〈f, g〉 = Q8 C SL2(3) and

ρ(d) =
[
1 1
. 1

]
, ρ(f) =

[
. 1
−1 .

]
, ρ(g) =

[
1 −1
−1 −1

]
.

In order to extend ρ to all of CG(D1) we let

ρ(c) = I2 =
[
1 .
. 1

]
, ρ(z) = ι · I2 =

[
ι .
. ι

]
.

We want to extend ρ further to NG(D1), which is an index 2 extension of
CG(D1). We consider the element h := b2 ∈ Z(S) < NG(D) of order 2. Since
h ∈ Z(E) inverts c ∈ D1 we have h ∈ NG(D1) \ CG(D1). Since Q8 C SL2(3)
is the derived subgroup of CG(D1), it is stable under conjugation with h, and
since h ∈ Z(E) inverts d ∈ D2 as well, we conclude that h induces a non-
inner automorphism of SL2(3) of order 2, thus extending SL2(3) to GL2(3) =
SL2(3) : 2. Since ρ is stable under outer automorphisms of SL2(3), there is are
two extensions of ρ to GL2(3), differing by the determinant character. Choosing
one of them and using hdh−1 = d−1, we extend ρ to NG(D1) = CG(D1) : 2 by

ρ(h) =
[
1 .
. −1

]
.

Since V is a simple k[CG(D1)]-module and D is abelian, it follows from Knörr’s
Theorem, see [25, Cor.41.8], that D is a vertex of V . As the restriction VD is
indecomposable, we conclude that VD is a source of V . Thus by Dade’s Theorem,
see [25, Thm.30.5], VD is an endo-permutation module, see [25, Ch.28]. Indeed,
from

ρ(d) · ρ(g) · ρ(d)−1 = ρ(f) and ρ(d) · ρ(f) · ρ(d)−1 = ρ(f)ρ(g)

we conclude that conjugation by ρ(d) in EV := Endk(V ) permutes the k-basis
{I2, ρ(g), ρ(f), ρ(fg)}. Hence EV is an interior permutation D-algebra, actually
an interior D/D1-algebra.

Let j+
1 ∈ b

+
1 be a source idempotent, i. e. a representative of a source point of the

block b+1 , see [25, p.149]. Since multiplication by a source idempotent induces
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a Morita equivalence, see [25, Prop.18.10], then j+
1 V is again the unique simple

module in j+
1 b

+
1 j

+
1 . Since j+

1 VD is a direct summand of the indecomposable
VD, we conclude that j+

1 V = V . Hence from Puig’s Theorem [25, Thm.50.6] as
interior D-algebras we get

b+1
∼= j+

1 b
+
1 j

+
1
∼= EV ⊗k k[D],

where D is embedded diagonally by D → EV ⊗k k[D] : x 7→ ρ(x)⊗ x.

(2.3) An endo-permutation module. We consider the restriction of ρ to

T := 〈z, c, d, h〉 = Z × (D : 2) ≤ NG(D1) ∩NG(D).

Thus we have T CNG(D) and NG(D)/T ∼= E/Z(E) ∼= V4, where NG(D)/T =
{1 · T, a · T, b · T, ba · T}. By tensor induction, see [4, Ch.13A], we obtain

W := (VT )⊗NG(D) ∼= VT ⊗k ( aVT )⊗k ( bVT )⊗k ( baVT ),

hence dimk(W ) = 24 = 16. Let σ be the representation of NG(D) afforded by
W . Since T CNG(D), the tensor factors are stable under the action of T , and
hence t ∈ T acts on W by

σ(t) = ρ(t)⊗ ρ(a−1ta)⊗ ρ(b−1tb)⊗ ρ(a−1b−1tba).

This in particular yields

σ(c) =
[
1 .
. 1

]
⊗
[
1 −1
. 1

]
⊗
[
1 −1
. 1

]
⊗
[
1 −1
. 1

]
,

σ(d) =
[
1 1
. 1

]
⊗
[
1 .
. 1

]
⊗
[
1 −1
. 1

]
⊗
[
1 1
. 1

]
,

σ(h) =
[
1 .
. −1

]
⊗
[
1 .
. −1

]
⊗
[
1 .
. −1

]
⊗
[
1 .
. −1

]
,

σ(z) =
[
ι .
. ι

]
⊗
[
ι .
. ι

]
⊗
[
ι .
. ι

]
⊗
[
ι .
. ι

]
= I16.

Hence W even is a module for k[NG(D)/Z] ∼= k[D : E]. Since Z × 2 = 〈z, h〉 <
T acts monomially on V , a similar computation as above shows that a, b ∈
NG(D), and thus a, b ∈ E, act monomially on W . Moreover, the MeatAxe
shows that W is indecomposable and self-contragredient, i. e. we have W ∼=
W ∗ := Homk(W,k) as k[NG(D)]-modules. Let EW := Endk(W ), which is an
interior NG(D)-algebra, actually an interior (D : E)-algebra.

Since the restriction WD is a tensor product of endo-permutation k[D]-modules,
it follows from [25, Prop.28.2] that WD also is an endo-permutation k[D]-
module. Indeed we have

EW ∼= EV ⊗k E aV ⊗k E bV ⊗k E baV
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as interior T -algebras. We have to check that EW fulfils the conditions in [17,
Cor.5.5]; thus we consider Brauer quotients: Since EV is an interior permutation
D-algebra, by [25, Prop.28.3] we for Di < D get the Brauer quotient

EW (Di) ∼= EV (Di)⊗k E aV (Di)⊗k E bV (Di)⊗k E baV (Di).

Since ρ(c) = I2 we have EV (D1) = ED1
V /tD1

〈1〉(EV ) ∼= EV as interior D/D1-
algebras. A direct calculation using ρ(d) shows

ED2
V = 〈I2,

[
. 1
. .

]
〉k and tD2

〈1〉(EV ) = 〈
[
. 1
. .

]
〉k,

thus EV (D2) = ED2
V /tD2

〈1〉(EV ) ∼= k with trivial D/D2-action. Using σ(c) this
yields

EW (D1) ∼= EV ⊗k k ⊗k k ⊗k k ∼= EV

as interior D/D1-algebras. Since b+1 ∼= EV ⊗kk[D] as interior D-algebras, this by
[17, Pf. of Thm.5.4] verifies condition [17, 5.5.1]. Using σ(d), σ(cd−1) and σ(cd)
we similarly obtain EW (D2) ∼= E aV as interior D/D2-algebras, EW (D3) ∼= E bV

as interior D/D3-algebras and EW (D4) ∼= E baV as interior D/D4-algebras, thus
verifying condition [17, 5.5.1] for all subgroups Di < D.

Finally we get EDV = ED1
V ∩ E

D2
V = ED2

V and

4∑
i=1

tDDi(E
Di
V ) = tDD1

(ED1
V ) = tDD1

(EV ) = tD2
〈1〉(EV ),

thus EV (D) = EDV /
∑4
i=1 t

D
Di

(EDiV ) = ED2
V /tD2

〈1〉(EV ) ∼= k, hence

EW (D) ∼= EV (D)⊗k E aV (D)⊗k E bV (D)⊗k E baV (D) ∼= k.

Since b+0 ∼= k ⊗k k[D] as interior D-algebras, this verifies condition [17, 5.5.1]
for D. Note that a computation using the MeatAxe actually shows that WD is
indecomposable, thus EDW = Endk[D](W ) is a primitive algebra, i. e. 1 ∈ EDW is
a primitive idempotent.

(2.4) The stable equivalence. Let i+ ∈ BD+ be a source idempotent of B+.
By Puig’s Theorem [25, Thm.45.11] the source algebra i+B+i+ carries the struc-
ture of an interior (D : E)-algebra, hence via kZ [D : S] ∼= k[D : E] also is an
interior NG(D)-algebra. Note that B+ also becomes an interior NG(D)-algebra
by the natural homomorphism NG(D)→ G→ (i+k[G]i+)∗ = B∗+, but the proof
of Puig’s Theorem [25, (45.8)] only shows that the natural map i+B+i+ → B+

is an embedding of interior CG(D)-algebras, while the interior NG(D)-algebra
structures of i+B+i+ and B+ might be different.

Using the embedding EW ⊗k i+B+i+ → EW ⊗k B+ of interior CG(D)-algebras,
there is a primitive idempotent ĩ+ ∈ (EW ⊗k B+)D such that

(1⊗ i+)ĩ+ = ĩ+ = ĩ+(1⊗ i+).
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The proof of [17, Thm.5.8] shows that ĩ+(EW ⊗kB+)ĩ+ = ĩ+(EW ⊗k i+B+i+)ĩ+
becomes an interior NG(D)-algebra by diagonal action. Hence using the asso-
ciated structural homomorphism

b+ ∼= kZ [D : S]→ ĩ+(EW ⊗k i+B+i+)ĩ+

the ĩ+(EW ⊗k i+B+i+)ĩ+-module ĩ+(W ⊗k i+M), where M is a B+-module,
becomes a b+-module. Hence we have an exact functor

F :
{
B+-mod → b+-mod

M 7→ ĩ+(W ⊗k i+M).

between the associated categories of finitely generated modules. The functor
F by [17, Rem.6.8] induces an equivalence B+-mod → b+-mod of the associ-
ated stable module categories. Moreover, F preserves relative projectivity with
respect to subgroups of D. Thus, possibly going over to a direct summand of
F , we may assume that F maps non-projective indecomposable B+-modules to
non-projective indecomposable b+-modules, preserving vertices.

(2.5) Evaluating F . In the computational setting we have to evaluate F on
certain B+-modules M explicitly. Note that i+M , considered as a k[CG(D)]-
module, is a direct summand of the restriction MCG(D), but the kZ [D : S]-
module structure of i+M cannot be directly read off from MNG(D). We will be
content with the following restricted situation:

Assumption: Let M be an indecomposable B+-module having vertex D, and
let M ′ be its Green correspondent with respect to NG(D). Let M ′ occur with
multiplicity 1 in a direct sum decomposition of MNG(D), while the other direct
summands of MNG(D) are projective, and let M ′D be indecomposable.

Thus M ′D is a source of M , and we have

MNG(D)
∼= M ′ ⊕ (proj) and MD

∼= M ′D ⊕ (proj).

Since F(M) is an indecomposable kZ [D : S]-module having vertex D, there is
an indecomposable direct summand M ′′ of the kZ [D : S]-module i+M , having
vertex D, such that F(M) ∼= ĩ+(W ⊗k M ′′) as kZ [D : S]-modules. Hence M ′D
also is a source of M ′′, and thus M ′′ is a direct summand of the induced module

kZ [D : S]⊗k[CG(D)] M
′
CG(D)

∼= k[NG(D)]⊗k[CG(D)] M
′
CG(D) =: M ′NG(D)

CG(D) .

Since M ′ is an extension of M ′CG(D) to NG(D), as k[NG(D)]-modules we have

M
′NG(D)
CG(D)

∼= (k ⊗kMCG(D))′NG(D) ∼= k
NG(D)
CG(D) ⊗kM

′ ∼= k[E]⊗kM ′.

This yields the following decomposition of the induced module into indecom-
posable summands, where {1a, . . . , 1d, 2} are the simple k[E]-modules,

M
′NG(D)
CG(D)

∼=
⊕

x∈{a,b,c,d}

(1x⊗kM ′)⊕ (2⊗kM ′)⊕ (2⊗kM ′).
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Since (1x⊗kM ′)D ∼= M ′D and (2⊗kM ′)D ∼= M ′D⊕M ′D, we conclude that M ′′ ∼=
1x⊗kM ′ as k[NG(D)]-modules, for some x ∈ {a, b, c, d}, hence M ′′D ∼= M ′D.

Let EM := Endk(M), which carries an interior G-algebra structure via the
structural homomorphism B+ → EM . Up to conjugation by an element of
(EDM )∗ we may assume that the submodule M ′ of MNG(D) is kZ [D : S]-invariant
as well. Hence EM ′ := Endk(M ′) carries both interior NG(D)-algebra struc-
tures, which coincide on D, and since M ′D is indecomposable the algebra EDM ′ is
primitive. Since both interior NG(D)-algebra structures yield the same homo-
morphism NG(D) → Aut(D), they by [25, Prop.44.2] yield the same subgroup
of NEM′ (D)/(EDM ′)

∗, and hence by [25, Cor.45.7] they differ by conjugation by
an element of (EDM ′)

∗.

Thus to find F(M) we have to pick a suitable indecomposable direct summand
of the tensor product W ⊗kM ′ of k[NG(D)]-modules.

Let EW⊗kM ′ := Endk(W ⊗k M ′). Since M ′D is indecomposable and WD is an
endo-permutation k[D]-module, by [16, Thm.5.6] we have

EW⊗kM ′(D) ∼= EW (D)⊗k EM ′(D) ∼= k ⊗k k ∼= k.

Thus (W ⊗k M ′)D has a unique indecomposable direct summand M ′′′ having
vertex D, and M ′′′ occurs with multiplicity 1. Thus F(M) is the unique inde-
composable direct summand of the k[NG(D)]-module W ⊗k M ′ having vertex
D, and it also occurs with multiplicity 1.

Actually, as M ′′′ is a source of F(M), we conclude that F(M) is a direct sum-
mand of the induced module M ′′′NG(D). Since

(M ′′′NG(D))D ∼=
⊕

g∈NG(D)/D

( gM ′′′)

we conclude that F(M)D ∼= M ′′′ holds, i. e. M ′′′ is extendible to NG(D).

3 The derived equivalence.

(3.1) Evaluating F at simple modules. We now apply the functor F to the
simple B+-modules M ∈ {56a, 56b, 64, 160a, 160b}; explicit matrix representa-
tions are available in [26]. We have to check the assumptions made in (2.5):
By Knörr’s Theorem, see [25, Cor.41.8], D is a vertex of M . Using GAP we
compute the restriction MNG(D), and using the MeatAxe we find the direct sum
decomposition of MNG(D); note that projectivity of an indecomposable module
is easily verified by considering its dimension and Loewy series.

The results are shown in Table 2, where the indecomposable direct summands
M ′ are indicated by their dimension, PS denotes the projective-indecomposable
b+-module corresponding to the simple b+-module S ∈ {1a, 1b, 2, 1c, 1d}, and
the superscripts indicate multiplicities. For all simple B+-modules M we indeed
have MNG(D)

∼= M ′ ⊕ (proj), where hence M ′ ∈ {11a, 11b, 10, 16a, 16b} is the
associated Green correspondent with respect to NG(D), and restricting further
the MeatAxe shows that in all cases M ′D is indecomposable as well.
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Table 2: Direct sum decomposition of MNG(D).

M M ′ ⊕ (proj)
56a 11a ⊕ P1a ⊕ P1c ⊕ P1d ⊕ P2

56b 11b ⊕ P1b ⊕ P1c ⊕ P1d ⊕ P2

64 10 ⊕ P1a ⊕ P1b ⊕ P 2
2

160a 16a ⊕ P 2
1a ⊕ P 2

1b ⊕ P 2
1c ⊕ P 2

1d ⊕ P 4
2

160b 16b ⊕ P 2
1a ⊕ P 2

1b ⊕ P 2
1c ⊕ P 2

1d ⊕ P 4
2

Table 3: Direct sum decomposition of W ⊗kM ′.

M M ′ F(M) ⊕ (Di) ⊕ (proj)
56a 11a 8a ⊕ 24a ⊕ (proj)
56b 11b 8b ⊕ 24b ⊕ (proj)
64 10 4 ⊕ 12c ⊕ (proj)

160a 16a 1c ⊕ 12a ⊕ (proj)
160b 16b 1d ⊕ 12b ⊕ (proj)

For later use we note the Loewy and socle series of the projective indecomposable
b+-modules: For x ∈ {a, b, c, d}, and where {y, y′, y′′} = {a, b, c, d}\{x}, we have

P1x
∼=


1x
2

1y ⊕ 1y′ ⊕ 1y′′

2
1x

 and P2
∼=


2

1a⊕ 1b⊕ 1c⊕ 1d
2⊕ 2⊕ 2

1a⊕ 1b⊕ 1c⊕ 1d
2

 .

The direct sum decomposition of the tensor products W ⊗k M ′ of k[NG(D)]-
modules, found by the MeatAxe, is given in Table 3. Again the projective
indecomposable direct summands are easily detected. By the analysis in (2.5)
and using [4, Thm.19.26], F(M) is the unique indecomposable direct summand
whose dimension is not divisible by 3, while the remaining non-projective direct
summand has the subgroups Di < D as its vertices.

The structure of the indecomposable b+-modules F(M) is found by the MeatAxe
as follows: The Loewy and socle series of F(56a), F(56b) and F(64) are given
as follows:

F(56a) ∼=


1a
2

1b⊕ 1c⊕ 1d
2

 , F(56b) ∼=


2

1a⊕ 1c⊕ 1d
2
1b

 , F(64) ∼=

 1b
2
1a

 .
Hence we have F(56a) ∼= Ω−1(1a) and F(56b) ∼= Ω(1b), where Ω: b+-mod →
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b+-mod denotes the Heller operator. As already indicated in Table 3 we have
F(160a) ∼= 1c and F(160b) ∼= 1d.

(3.2) A tilting complex. According to the heuristics in [23], in view of
the appearance of the Heller operator and its inverse above, we are led to
the following sensible guess: We partition the set of simple b+-modules into
{1a, 1b, 2, 1c, 1d} = I ′

.
∪ I ′′

.
∪ I0, where I ′ := {1a} and I ′′ := {1b} as well as

I0 = {1c, 1d, 2}. Moreover, in the homotopy category Kb(b+-proj) of bounded
complexes of finitely generated projective b+-modules let

T := T1a ⊕ T1b ⊕ T2 ⊕ T1c ⊕ T1d,

where
T1a : 0 −→ P1a

α−→ P2 −→ 0,

T1b : 0 −→ P2
β−→ P1b −→ 0,

T2 : 0 −→ P2 −→ 0,
T1c : 0 −→ P1c −→ 0,
T1d : 0 −→ P1d −→ 0,

where T2 as well as T1c and T1d are concentrated in degree 0, and where

ker(α) = socb+(P1a) and im (β) = radb+(P1b).

Note that α ∈ Homb+(P1a, P2) and β ∈ Homb+(P2, P1b) are not uniquely defined
by these conditions, hence we choose α and β suitably and keep them fixed.

We show that T indeed is a tilting complex, see [18]: Thus we firstly have to show
that add(T ), i. e. the full subcategory of Kb(b+-proj) consisting of all direct
summands of finite sums of copies of T , generates Kb(b+-proj) as a triangulated
category: Since T2 as well as T1c and T1d already are direct summands of T , it
follows from [8, Ex.2.3.1], using T1a and T1b, that the triangulated subcategory
generated by add(T ) contains 0→ P1a → 0 and 0→ P1b → 0 as well.

Secondly we have to show that HomKb(b+-proj)(T , T [i]) = {0} for all 0 6= i ∈ Z,
which amounts to showing that HomKb(b+-proj)(TS , TT [i]) = {0} for all 0 6= i ∈ Z
and S, T ∈ {1a, 1b, 2, 1c, 1d}: Most of the non-trivial cases easily follow from
the properties of the maps α and β and from the Loewy series of the projective
indecomposable b+-modules. We discuss the two cases needing closer analysis;
note that this essentially amounts to checking [23, Cond.2]:

Firstly, let S = 1a and T = 1b as well as i = 1. We consider the total chain
complex of the homomorphism double complex of k-vector spaces associated to
T1a and T1b[1], see [1, Ch.2.7]:

0→ Endb+(P2) ∂1→Homb+(P1a, P2)⊕Homb+(P2, P1b)
∂0→Homb+(P1a, P1b)→ 0,

where
∂1 : η 7→ [αη, ηβ] and ∂0 : [γ, δ] 7→ αδ − γβ.

Hence showing that all chain maps between T1a and T1b[1] are homotopic to the
zero map amounts to showing that the above complex has vanishing homology
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in degree 0, i. e. that im (∂1) = ker(∂0) holds: For any ε ∈ Homb+(P1a, P1b) we
have im (ε) ≤ radb+(P1b), thus ε factors through β, implying that ∂0 is surjective.
Since dimk(Homb+(P1a, P1b)) = 1 as well as dimk(Homb+(P1a, P2)) = 2 and
dimk(Homb+(P2, P1b)) = 2, we conclude that dimk(ker(∂0)) = 3. Moreover, we
use the MeatAxe to compute k-bases of Endb+(P2) as well as of Homb+(P1a, P2)
and Homb+(P2, P1b), and to determine the matrix of the k-linear map ∂1. It
turns out that dimk(im (∂1)) = 3 holds as well.

Secondly, let S = 1b and T = 1a and i = −1. We consider the chain complex

0→ Homb+(P1b, P1a) ∂1→ Homb+(P2, P1a)⊕Homb+(P1b, P2) ∂0→ Endb+(P2)→ 0,

where
∂1 : η 7→ [βη, ηα] and ∂0 : [γ, δ] 7→ γα− βδ.

We again have to show that the above complex has vanishing homology in
degree 0: For any 0 6= η ∈ Homb+(P1b, P1a) we have βη 6= 0 and ηα 6= 0.
Thus from dimk(Homb+(P1b, P1a)) = 1 we conclude that dimk(im (∂1)) = 1.
Moreover, we use the MeatAxe to compute k-bases of Homb+(P2, P1a) and
Homb+(P1b, P2), and to determine the matrix of the k-linear map ∂0. It turns
out that dimk(im (∂0)) = 3, and since we have dimk(Homb+(P2, P1a)) = 2 and
dimk(Homb+(P1b, P2)) = 2, we conclude dimk(ker(∂0)) = 1 as well.

(3.3) The Rickard-Okuyama method. Let Db(b+-mod) be the bounded
derived category of the underlying module category. Recall that by [19] the
natural embedding b+-mod → Db(b+-mod) induces an equivalence of triangu-
lated categories

b+-mod → Db(b+-mod)/Kb(b+-proj),

where the translation functor of b+-mod is given by the inverse Ω−1 of the
Heller operator. Thus complexes in Db(b+-mod) which become isomorphic in
Db(b+-mod)/Kb(proj-b+) are called stably isomorphic.

Due to the heuristics in [21, Ch.6.3] we look for complexes XS in Db(b+-mod),
where S ∈ {1a, 1b, 2, 1c, 1d}, having homology concentrated in one degree, and
being stably isomorphic to F(M) for M ∈ {56a, 56b, 64, 160a, 160b}: Let

X1a := 1a[1] : 0 −→ 1a −→ 0,
X1b := 1b[−1] : 0 −→ 1b −→ 0,

X2 := F(64) : 0 −→

 1b
2
1a

 −→ 0,

X1c := 1c : 0 −→ 1c −→ 0,
X1d := 1d : 0 −→ 1d −→ 0,

where X2 and X1c as well as X1d are concentrated in degree 0, while X1a and
X1b are concentrated in degree −1 and 1, respectively.

Recall that we have F(160a) ∼= 1c and F(160b) ∼= 1d as b+-modules. Moreover,
we have F(56a) ∼= Ω−1(1a) as b+-modules, where Ω−1(1a) and 1a[1] are stably
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isomorphic, as well as F(56b) ∼= Ω(1b) as b+-modules, where similarly Ω(1b)
and 1b[−1] are stably isomorphic.

(3.4) As we are going to apply [21, La.5.2] to {X1a,X1b,X2,X1c,X1d}, we
have to check the properties listed in [21, Ch.5]: Firstly, the triangulated cat-
egory generated by {X1a,X1b,X2,X1c,X1d} contains the 1-dimensional simple
b+-modules anyway, and it follows from [8, Ex.2.3.1], using non-zero homo-
morphisms 1a → F(64) and F(64) → 1b of b+-modules, that it also contains
the simple 2-dimensional b+-module. Thus {X1a,X1b,X2,X1c,X1d} generates
Db(b+-mod) as a triangulated category.

Secondly we have to show that for all S, T ∈ {1a, 1b, 2, 1c, 1d} and for all i ∈ N
we have HomDb(b+-mod)(XS ,XT [−i]) = {0} and

HomDb(b+-mod)(XS ,XT ) ∼=
{

k, if S ∼= T,
{0}, if S 6∼= T.

Considering the XS as complexes in Kb(b+-mod), it is immediate that we even
have HomKb(b+-mod)(XS ,XT [−i]) = {0} and HomKb(b+-mod)(XS ,XT ) = {0},
whenever S 6∼= T . Finally, we have dimk(Endb+(XS)) = 1, and since XS 6∼= 0 in
Db(b+-mod) we conclude dimk(EndDb(b+-mod)(XS)) = 1.

(3.5) To relate the tilting complex T to the complexes {X1a,X1b,X2,X1c,X1d},
we moreover have to check the assumptions of [21, La.5.2]: We have to show
that for all S, T ∈ {1a, 1b, 2, 1c, 1d} and for all i ∈ Z we have

HomDb(b+-mod)(TS ,XT [i]) ∼=
{

k, if S ∼= T and i = 0,
{0}, otherwise.

It is immediate that we even have HomKb(b+-mod)(TS ,XT [i]) = {0} unless pos-
sibly S ∼= T and i = 0, or T = 2 and [S, i] ∈ {[1a, 0], [1a, 1], [1b, 0], [1b,−1]}. We
exclude the last four possibilities:

Firstly, let S = 1a. For i = 0 let γ ∈ Homb+(P2,F(64)) such that αγ = 0,
and assume that γ 6= 0. Then we have im (α) ≤ ker(γ) < P2 and P2/ ker(γ) ∼=

im (γ) ∼=
[

2
1a

]
. Since im (α) has Loewy length 4, while P2 has Loewy length

5, we conclude that the simple b+-module 1a occurs with multiplicity at least
2 as a constituent of the second Loewy layer radb+(P2)/rad2

b+(P2) of P2, a
contradiction. Hence we already have γ = 0.

For i = 1 let γ ∈ Homb+(P1a,F(64)), and let ε : F(64)→ P1a be an embedding
of F(64) into its injective hull P1a. Then we have socb+(P1a) ≤ ker(γε), hence
there is δ : P2 → P1a such that γε = αδ. Using the Loewy series of P1a we
conclude that im (δ) ≤ im (ε), implying that γ factors through α as well, thus γ
is homotopic to the zero map.

Secondly, let S = 1b. For i = 0 let γ ∈ Homb+(P2,F(64)). Since the simple b+-
module 1a occurs with multiplicity 1 as a constituent of the second Loewy layer
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both of im (β) and P2, we conclude that ker(β) ≤ ker(γ). Letting ε : F(64) →
P1a be as above, we conclude that there is δ : P1b → P1a such that γε = βδ.
Using the Loewy series of P1a we conclude that im (δ) = im (ε), implying that
γ factors through δ as well, thus γ is homotopic to the zero map. Finally, for
i = −1 let γ ∈ Homb+(P1b,F(64)) such that βγ = 0. Then we have γ = 0.

It remains to consider HomDb(b+-mod)(TS ,XS) for S ∈ {1a, 1b, 2, 1c, 1d}: For
S = 1a we have dimk(HomDb(b+-mod)(T1a,X1a)) ≤ 1. Hence it remains to show
that the homomorphism T1a → X1a determined by a b+-epimorphism P1a → 1a
is not the zero map in Db(b+-mod). Replacing X1a = 1a[1] by a projective
resolution

P1a[1] : · · · −→ P2 −→ P1a −→ 0

in K−(b+-proj), with homology concentrated in degree −1, this amounts to
show that the homomorphism T1a → P1a[1] determined by the identity map on
P1a is not homotopic to the zero map. Since there is no b+-epimorphism from
P2 to P1a, this is immediate.

For S = 1b we have dimk(HomDb(b+-mod)(T1b,X1b)) ≤ 1. Hence it remains
to show that the homomorphism T1b → X1b determined by a b+-epimorphism
P1b → 1b is not the zero map in Db(b+-mod). Replacing X1b = 1b[−1] by an
injective resolution

I1b[−1] : 0 −→ P1b −→ P2 −→ · · · .

in K+(b+-proj), with homology concentrated in degree 1, this amounts to
show that the homomorphism T1b → I1b[−1] determined by a non-zero b+-
homomorphism P1b → socb+(P1b) is not homotopic to the zero map, which is
immediate.

For S = 2 as well as S = 1c and S = 1d we argue similarly, using injective reso-
lutions of F(64) and 1c as well as 1d, respectively, with homology concentrated
in degree 0.

(3.6) Conclusion. Hence letting ET := End◦b+-mod(T ), the proof of [21, La.5.2]
implies that there is an equivalence Db(b+-mod)→ Db(ET -mod), mapping the
complexes XS , for S ∈ {1a, 1b, 2, 1c, 1d}, to the simple ET -modules.

From ET being derived equivalent to the symmetric k-algebra b+, we conclude
that ET also a symmetric k-algebra. Moreover, by [20] there is an ET -b+-
bimodule Y which is both a finitely generated projective ET -module and a
finitely generated projective b+-right module, such that the tensor functor

G := Y⊗b+?: b+-mod → ET -mod,

which hence is exact and maps projective b+-modules to projective ET -modules,
induces an equivalence b+-mod → ET -mod. Moreover, G maps the images of
the complexes XS in b+-mod ∼= Db(b+-mod)/Kb(b+-proj) to the simple ET -
modules in ET -mod.
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Hence the exact functor G ◦ F : B+-mod → ET -mod induces an equivalence
B+-mod → ET -mod. Moreover, the b+-modules F(M), for the simple B+-
modules M ∈ {56a, 56b, 64, 160a, 160b}, are stably isomorphic to the complexes
XS , where S ∈ {1a, 1b, 2, 1c, 1d}, respectively. Thus, possibly going over to a
direct summand of G ◦ F , we may assume that G ◦ F maps the simple B+-
modules to the simple ET -modules. Hence by [10, Prop.2.5] the functor G ◦
F : B+-mod → ET -mod is an equivalence.

Thus we have shown that B+ and ET are Morita equivalent, while b+ and ET
are derived equivalent, thus proving Broué’s conjecture for B+ and b+.
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[2] M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Asté-
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