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Chapter 1

Introduction

The transitive permutation groups of prime degree were widely studied before

the classi�cation of the �nite simple groups (in the following abbreviated as

CFSG) was complete in the 1980s. As there did not exist a uniform method

to classify the transitive permutation groups of prime degree, many papers

dealt with various approaches to examine the structure of these groups or

to �nd possible generators. Some of the authors used theoretical methods

to determine some properties of the groups whereas others computed some

of them on computers. Nevertheless, before the CFSG was published, there

were many unanswered questions regarding transitive permutation groups of

prime degree.

Basically we can distinguish between two types of transitive permutation

groups of prime degree. On the one hand we have the solvable groups. They

were taken care of by Galois. He proved that each solvable transitive per-

mutation group of prime degree is permutationally equivalent to a subgroup

of the a�ne group, that is the group of all a�ne transformations of the one-

dimensional vector space Fp. Basically, this means that a solvable transitive

group of prime degree p acts on the corresponding p elements in the same

way as the a�ne group on the elements of Fp. The a�ne transformations

can be represented as 2 × 2 matrices which act on the 2-dimensional row

vector space over Fp by right matrix multiplication. This action gives us a

better understanding of the group actions of the abstract solvable transitive

permutation groups.

On the other hand there are the non-solvable groups whose classi�cation is
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2 Chap. 1. Introduction

not as easy as the classi�cation of the solvable transitive permutation groups

of prime degree. Throughout this thesis our attention will be directed to these

type of groups. After the publication of the CFSG, only four theorems were

necessary to classify them. First, Burnside proved that a transitive group

of prime degree is either solvable or 2-fold transitive. Further, he found out

that 2-fold transitive permutation groups of prime degree are almost simple,

meaning they contain a simple non-abelian minimal normal subgroup S and

lie in the automorphism group of S. A concrete connection is given by

Guralnick. He classi�ed all simple non-abelian groups with a subgroup of

prime power index, which leads directly to the non-abelian simple groups S

we are looking for.

Now the question arises why the classi�cation of the (non-solvable) tran-

sitive permutation groups of prime degree is still of interest for many mathe-

maticians. One could think that all problems which existed before the pub-

lication of the CFSG are solved with this theorem. But there is one detail

that troubles many mathematicians, that is the length of its proof. The proof

of the CFSG contains more than 10.000 pages which makes it quite hard to

understand and to work with. Thus the search for an easier way to classify

all transitive permutation groups of prime degree without using the CFSG

continues.

In this thesis the main goal is the computation of non-solvable transitive

permutation groups of prime degree which are proper subgroups of the al-

ternating group of the same degree. For that, we examine the structure of

the non-solvable transitive permutation groups G of prime degree as many

authors such as Brauer ([3]) and Fryer ([8]) did before. More precisely, using

the given properties like transitivity or the fact that the groups are non-

solvable we determine generating sets of the groups. We will see that such

groups can be generated by three generators a, b, c such that a is a p-cycle,

b ∈ NG(〈a〉) \ CG(〈a〉) and c ∈ NG(〈b〉) \ 〈b〉. As said before, it is our goal

to compute the non-solvable transitive permutation groups of prime degree

which are proper subgroups of the alternating group of the same degree. In

particular, we restrict ourselves to primes p 6 23. For the computation,

we implement two algorithms: the �rst computes the generators a and b

as described above and the second algorithm determines the desired groups
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given a and b as input. This method is based on the results of Fryer ([8])

and Parker and Nikolai ([23]) who studied transitive permutation groups of

prime degree, where the prime p has a speci�c form; in particular p = 2q+ 1,

where q also is prime. In Fryer's research q is the order of the element b given

above. The method we use to �nd suitable generators is a generalization of

the method used by Fryer as we allow q to be composite. Then we obtain

more possibilities for the order of the element b, namely all divisors of q.

The present thesis is structured as follows: In Chapter 1, we give a short

introduction to permutation groups and some basic terms. Then we prove the

theorem of Galois classifying the solvable transitive groups of prime degree.

In the next section of this chapter we prove the two theorems of Burnside

mentioned above and show how the classi�cation of �nite simple groups is

related to our matter. For that, we introduce the theorem of Guralnick. After

establishing which groups are non-solvable transitive permutation groups of

prime degree, we give an explanation of their actions.

The second chapter starts with some useful results which we need proving

the main theorem of this chapter which states that each non-solvable transi-

tive permutation group of prime degree contains elements a, b, c as described

above. Further we prove some assertions on the cycle structure and order of

these elements and their uniqueness up to conjugation. As said before we

implement two algorithms in GAP ([10]) to determine the desired groups.

A third algorithm is implemented to test whether the resulting groups are

maximal in the alternating group of the same degree. The GAP codes can

be found in Appendix A. The next sections of the second chapter deal with

the veri�cation of the algorithms and the results we obtain using them. At

last, we give an alternative way to compute representatives of all conjugacy

classes of transitive permutation groups of prime degree up to 13 using the

table of marks. Here it is our goal to use the GAP functions provided by

the library of table of marks to determine all conjugacy classes of subgroups

of the symmetric group of prime degree and then to check whether they are

transitive or not. A GAP code for this method can be found in Appendix B.
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Chapter 2

Transitive permutation groups of

prime degree

In the present chapter we summarize the known results on the classi�cation of

transitive permutation groups of prime degree. Basically, we can distinguish

between two types of such groups: solvable and non-solvable groups. The

solvable transitive permutation groups of prime degree have been classi�ed

by Galois (cf. Theorem 2.26), whereas the non-solvable groups can be listed

by means of the classi�cation of �nite simple groups, which we will abbreviate

by CFSG in the following.

Theorem 2.1 (CFSG, [6, Chapter 4, Theorem 4.9]) A non-abelian �nite

simple group is one of the following:

(1) an alternating group An, n > 5;

(2) a �nite group of Lie type;

(3) one of the 26 sporadic groups.

This chapter is structured as follows: First, we give a short introduction

on permutation groups in general. Then we list a few useful results on tran-

sitive and primitive permutation groups of prime degree. After proving the

theorem of Galois treating the solvable permutation groups we show how the

CFSG classi�es the non-solvable permutation groups. Further, we prove two

theorems of Burnside regarding those groups.

5



6 Chap. 2. Transitive permutation groups of prime degree

We start with the concept of group actions, which is the basis of permu-

tation groups, and some basic terms. Let Ω be a �nite set. Introductory, we

consider the set of all bijections on Ω. This set forms a group with respect

to function compositions, which is called the symmetric group on Ω. We

denote the symmetric group by SΩ. For all n ∈ N and Ω = {1, . . . , n} we set
SΩ := Sn. The elements of the symmetric group are called permutations.

De�nition 2.2 Let G be a �nite group and let Ω be a �nite set.

(1) The group G acts on Ω if and only if there exists a map

Ω×G→ Ω, (ω, g) 7→ ωg

with

(a) (ωg)h = ωgh for all ω ∈ Ω, g, h ∈ G;

(b) ωidG = ω for all ω ∈ Ω.

(2) If G acts on Ω, we call Ω a G-set.

(3) If G acts on Ω, there exists a group homorphism φ : G→ SΩ. We call φ

a permutation representation of G.

By De�nition 2.2, the symmetric group SΩ acts on the corresponding set

Ω. De�nition 2.2(3) states that we can de�ne the action of each g ∈ G on

some ω ∈ Ω as an application of the corresponding permutation φ(g) in SΩ,

hence ωg := ωφ(g).

De�nition 2.3 Let G be a �nite group and let Ω be a G-set.

1. For ω ∈ Ω we call Gω := {g ∈ G | ωg = ω} 6 G the stabilizer of ω in

G.

2. For ω ∈ Ω we call ωG := {ωg | g ∈ G} ⊆ Ω the orbit of ω under the

action of G.

The concept of a permutation group was �rst introduced by Galois. Al-

though many mathematicians in the 18th century gave consideration to the

concept of permutations and to what today is known as a group, Galois was
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the �rst to use the name group. Originally, he used the theory of permu-

tations to understand how the roots of a given polynomial equation relate

to each other, which helped him to decide whether a polynomial equation

was solvable by radicals. For instance he managed to prove that to decide

whether a polynomial equation is solvable or not is equivalent to whether or

not the Galois group of the polynomial is solvable.

In the following we give a few basic de�nitions, including the de�nition

of a transitive permutation group.

De�nition 2.4 Let G be a �nite group and let Ω be a G-set.

(1) The action of G on Ω is called faithful if and only if
⋂
ω∈Ω Gω = {idG}.

(2) We call G a permutation group on Ω if and only if the action of G on Ω

is faithful.

(3) The degree of a permutation group is the cardinality of Ω.

(4) The action of G on Ω is called transitive if and only if ωG = Ω for every

ω ∈ Ω.

(5) The action of G on Ω is called regular if and only if the action of G on

Ω is transitive and Gω = {idG} for all ω ∈ Ω.

In this thesis we will also say that G is transitive or regular and so on

meaning the same as in De�nition 2.4.

Remark 2.5 Let G be a �nite group and let Ω be a G-set. The action of G

on Ω is faithful if and only if the permutation representation φ : G → SΩ is

injective. In particular, the group G is isomorphic to a subgroup of SΩ.

De�nition 2.6 Let G be a permutation group on the �nite set Ω.

(1) A subset ∆ ⊆ Ω is called a block if and only if ∆g = ∆ or ∆g ∩∆ = ∅
for all g ∈ G.

(2) Let G be transitive on Ω, then G is called imprimitive on Ω if and only

if there exists a block ∆ with |∆| > 1 and ∆ 6= Ω. Otherwise, the group

G is called primitive.
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The next property we introduce is a generalization of transitivity: the

k-fold transitivity.

De�nition 2.7 Let G be a permutation group on a �nite set Ω and let k

be an integer with 2 6 k 6 |Ω|. We call G k-fold transitive on Ω if and only

if for each pair of k-tuples (a1, . . . , ak), (b1, . . . , bk) ∈ Ωk with ai 6= bi for all

i ∈ {1, . . . , k}, there exists g ∈ G with agi = bi for all i ∈ {1, . . . , k}. The

group G is called sharply k-fold transitive on Ω if and only if the element g

is unique; in particular, the above de�ned action is regular.

Later on, we will see that transitive permutation groups of prime degree,

which are not solvable, are 2-fold transitive.

Theorem 2.8 ([16, Kapitel II, Satz 1.9]) A 2-fold transitive permutation

group is primitive.

A very useful concept is the permutation equivalence of two permutation

groups, which we introduce next. Having only an abstract description of a

group and its action on a �nite set does not always reveal how the group acts

on the set. Hence, it is helpful to transfer the group and its action to a permu-

tationally equivalent group of which we might have a better understanding.

In the next section, we use the permutation equivalence of solvable transi-

tive permutation groups of prime degree to subgroups of the a�ne group to

understand the action of those groups.

De�nition 2.9 Let G be a �nite permutation group on a �nite set Ω and

let H be a �nite permutation group on a �nite set ∆.

(1) We call G and H (or both actions) permutationally equivalent if and

only if there exist an invertible map ε : Ω → ∆ and an isomorphism

ϕ : G→ H such that

ε(ωg) = ε(ω)ϕ(g)

for all ω ∈ Ω and all g ∈ G.

(2) If G = H and the actions of G on Ω and on ∆ are permutationally

equivalent with ϕ = id, we call Ω and ∆ isomorphic G-sets.

Lemma 2.10 Let n ∈ N and let U,H 6 Sn. If U and H are conjugate in

Sn then they are permutationally equivalent on Ω := {1, . . . , n}.
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Proof. Let U be a subgroup of Sn and let H be conjugate to U , i.e. there

exists x ∈ Sn such that H = x−1Ux. Then

ϕ : U → H = x−1Ux, u 7→ x−1ux

is an isomorphism between U and H. Moreover, the map

α : Ω→ Ω, ω 7→ ωx

is a bijection. Let ω ∈ Ω and let u ∈ U . We obtain

α(ωu) = (ωu)x = ωux = ωxx
−1ux = α(ω)ϕ(u),

hence U and H are permutationally equivalent.

The next theorem does not require the given group to be a permutation

group. Nevertheless it is very useful and �nds application almost everywhere

in the theory of groups.

Theorem 2.11 (N/C-Theorem, [16, Kapitel I, Satz 4.5]) Let G be a �nite

group and let U be a subgroup of G. Then the quotient NG(U)/CG(U) is

isomorphic to a subgroup of Aut(U).

Theorem 2.12 ([16, Kapitel II, Satz 1.3]) If G is a transitive permutation

group of prime degree, then G is primitive.

Theorem 2.12 states that transitivity is equivalent to primitivity given a

permutation group of prime degree.

Theorem 2.13 ([16, Kapitel II, Satz 1.4]) Let G be a transitive permutation

group on Ω with |Ω| > 1 and let ω ∈ Ω. Then G is primitive if and only if

Gω is a maximal subgroup of G.

Galois also introduced the concept of a normal subgroup. The next the-

orem shows how normal subgroups of transitive, respectively primitive per-

mutation groups act on the corresponding G-set.

Theorem 2.14 ([16, Kapitel II, Satz 1.5]) Let G be a transitive permutation

group on a set Ω and let N 6= {idG} be a normal subgroup of G. If N is

not transitive on Ω, then the orbits of N form a partition of Ω which is
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preserved under the action of G, and where the blocks have the same length.

In particular, if G is primitive on Ω then N is transitive on Ω.

The next two theorems deal with abelian transitive permutation groups.

As we see later, the groups we consider have a minimal normal subgroup

which is abelian, so both theorems can be applied to the normal subgroups

of transitive permutation groups.

Theorem 2.15 ([16, Kapitel I, Satz 5.13]) If G is an abelian and transitive

permutation group, then G is regular.

Theorem 2.16 ([16, Kapitel II, Satz 3.1]) Let G be an abelian transitive

permutation group on Ω = {1, . . . , n}. Then G is equal to its centralizer

CSn(G) in the symmetric group Sn.

Another signi�cant result of Galois is the following theorem. We will use

it to prove the main result regarding solvable transitive permutation groups

of prime degree.

Theorem 2.17 (Galois, [16, Kapitel II, Satz 3.2]) Let G be a primitive

permutation group of degree n on a �nite set Ω and let N be a minimal

normal subgroup of G. Let ω ∈ Ω be �xed. If N is solvable, then the following

statements hold:

(1) N is regular and elementary abelian. Moreover, the degree of G is a

prime power pm.

(2) G is the semidirect product of N and the stabilizer of ω, i.e. G = GωN

and Gω ∩N = {idG}.

(3) N is the unique minimal normal subgroup of G.

(4) Gω does not contain a normal subgroup other than the trivial group.

(5) If G is solvable, then all complements of N are conjugate to each other

in G.

The above theorem reveals some useful properties of minimal normal

subgroups in primitive permutation groups. The next theorem we intro-

duce gives a restriction on the number of minimal normal subgroups in such

groups.
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Theorem 2.18 (Baer, [25, Kapitel 4, Satz 4.1]) Let G be a primitive per-

mutation group. Then one of the following statements holds:

(1) The group G has a unique minimal normal subgroup N and N = CG(N)

is regular.

(2) The group G has a unique minimal normal subgroup N and CG(N) is

the trivial group.

(3) The group G has exactly two minimal normal subgroups N and M such

that M = CG(N) ∼= N and both are regular.

Remark 2.19 Let G be a permutation group on a �nite set Ω and let N be

a normal subgroup of G such that N is regular on Ω. Then for all x ∈ Ω the

action of Gx on Ω is permutationally equivalent to the action of Gx on N by

conjugation.

Proof. Let x ∈ Ω be �xed. As N is regular on Ω, for each ω ∈ Ω there exists

a unique α(ω) ∈ N such that xα(ω) = ω. Hence

α : Ω→ N, ω 7→ α(ω),

is a bijection. Let g ∈ Gx. Then for all ω ∈ Ω we obtain

xg
−1α(ω)g = xα(ω)g = ωg,

and thus

α(ωg) = g−1α(ω)g = α(ω)g.

Hence the actions of Gx on Ω and on N are permutationally equivalent.

Finally, we prove the permutation equivalence of the actions of G on a

G-set and on a minimal normal subgroup of G.

Lemma 2.20 Let p be a prime and m ∈ N. Let G be a primitive permutation

group of degree pm on the �nite set Ω and let N be a minimal normal subgroup

of G such that N solvable. Let x ∈ Ω be �xed. Then G = GxN is the

semidirect product with Gx ∩N = {idG} and G acts on the normal subgroup

N via ng = ng̃ñ := g̃−1ng̃ñ, where g̃ ∈ Gx and ñ ∈ N . Moreover, the set Ω

and the group N are isomorphic G-sets.
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Proof. Let x ∈ Ω be �xed. By Theorem 2.17(2), the group G is the semidirect

product of N and the stabilizer of x, namely Gx. Let g = g̃ñ ∈ G, where

g̃ ∈ Gx and ñ ∈ N , and let n ∈ N . First, we show that ng = ng̃ñ := g̃−1ng̃ñ

is an action. Let h = h̃m ∈ G, where h̃ ∈ Gx and m ∈ N . Then we have

gh = g̃ñh̃m = g̃h̃n̂m, where n̂ ∈ N , and therefore

(ng)h = (g̃−1ng̃ñ)h = h̃−1g̃−1ng̃ñh̃m = (g̃h̃)−1ng̃h̃n̂m = ngh.

Further, nidG = id−1
G nidG = n. Hence, the group G acts on N as de�ned

above.

Assume, that there exists idG 6= g = g̃ñ ∈ G such that ng = n for all

n ∈ N . Then

n = ng = g̃−1ng̃ñ for all n ∈ N.

For x ∈ Ω it follows that

xn = xg̃
−1ng̃ñ = xng̃ñ

and therefore, g = g̃ñ ∈ Gxn for all n ∈ N . Since N is transitive on Ω, we

obtain g ∈ Gω for all ω ∈ Ω. Since g̃ ∈ Gx and g̃ñ ∈ Gx, the element ñ is

in Gx as well, contradicting the fact that the intersection of Gx and N is the

trivial group. Hence the action of G on N is faithful.

Since N is regular on Ω, for each ω there exists a unique n ∈ N such that

xn = ω. Then α : N → Ω, n 7→ xn is a bijection. Let n ∈ N, g = g̃ñ ∈ G.
Then

α(n)g = α(n)g̃ñ = xng̃ñ = xg̃g̃
−1ng̃ñ = xg̃

−1ng̃ñ = α(ng̃ñ) = α(ng).

Thus the actions of G on N and on Ω are permutationally equivalent.

2.1 The theorem of Galois

After having set the foundations of permutation groups in the previous sec-

tion it is now our goal to get an understanding of the solvable transitive

permutation groups of prime degree. The theorem of Galois states that such

groups are permutationally equivalent to subgroups of A�(1, p). Therefore
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the �rst step is to examine the a�ne group. It is a subgroup of the so-called

general linear group.

De�nition 2.21 Let p be a prime and let q = pr, r ∈ N, be a power of p.

Let Fq be the corresponding Galois �eld with q elements and let V := Fmq
denote an m-dimensional vector space over Fq. We call GL(V ) := AutFq(V )

the general linear group over Fq. For a suitable basis we also can describe

GL(V ) as a matrix group which we denote by GL(m, q).

De�nition 2.22 Let p be a prime, q = pr for some r ∈ N. Let V := Fmq
be the row vector space over the Galois �eld Fq of dimension m > 1. Let

A ∈ GL(m, q) and b ∈ V . The map

fA,b : V → V, v.fA,b = vA+ b,

is called an a�ne transformation on V . Further, we call

A�(m, q) := {fA,b | A ∈ GL(m, q), b ∈ V } 6 SV

the a�ne group on V .

Remark 2.23 The map

ϑ : A�(m, q)→ GL(m+ 1, q), fA,b 7→

(
A 0

b 1

)
,

where A ∈ GL(m, q) and b ∈ V , is a group monomorphism.

Proof. Let A1, A2 ∈ GL(m, q) and b1, b2 ∈ V . Since

ϑ(fA1,b1fA2,b2) = ϑ(fA1A2,b1A2+b2)

=

(
A1A2 0

b1A2 + b2 1

)

=

(
A1 0

b1 1

)(
A2 0

b2 1

)
= ϑ(fA1,b1)ϑ(fA2,b2),

we have a group homomorphism of A�(m, q) into GL(m + 1, q). Further, ϑ
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is injective, as

ker(ϑ) =

{
fA,b ∈ A�(m, q) | ϑ(fA,b) =

(
Em 0

0 1

)}
= {fEm,0}

In summary, ϑ is a group monomorphism.

Using ϑ we identify A�(m, q) with a subgroup AGL(m, q) of GL(m+1, q),

which we de�ne as follows:

AGL(m, q) :=

{(
A 0

b 1

)
| A ∈ GL(m, q), b ∈ V

}
.

By Remark 2.23 we have an isomorphism

φ : A�(1, p)→ AGL(1, p), fa,b 7→

(
a 0

b 1

)
,

where a ∈ F∗p and b ∈ Fp. The a�ne group A�(1, p) acts on Fp via a�ne

transformations, whereas the matrix group AGL(1, p) acts on the elements

of M := {(x, 1) | x ∈ Fp} by right matrix multiplication. Let

α : Fp →M, x 7→ (x, 1)

be the bijective function mapping an element x ∈ Fp to the row vector

(x, 1) ∈M . Let x ∈ Fp and g = fa,b ∈ A�(1, p). Since

α(xg) = α(x.fa,b) = α(xa+ b) = (xa+ b, 1) = (x, 1)

(
a 0

b 1

)
= α(x)φ(g),

the groups A�(1, p) and AGL(1, p) are permutationally equivalent. Further-

more, the a�ne group A�(m, q) is isomorphic to a semidirect product of

GL(m, q) and V , as the next result shows.

Lemma 2.24 Let V be a row vector space of dimension m over the Galois

�eld Fq. Further, let

N := {fEm,b | b ∈ V } 6 A�(m, q),
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and let

K := {fA,0 | A ∈ GL(m, q)} 6 A�(m, q).

Then N is a normal subgroup of the a�ne group A�(m, q) and we have

A�(m, q) = K nN ∼= GL(m, q)n V.

Proof. First, we prove that N is a normal subgroup of the a�ne group

A�(m, q). Let A2 ∈ GL(m, q) and b1, b2 ∈ V with the a�ne transforma-

tions fEm,b1 ∈ N and fA2,b2 ∈ A�(m, q). Note, that the inverse of an a�ne

transformation is f−1
A2,b2

= fA−1
2 ,−b2A−1

2
∈ A�(m, q). We prove that

f−1
A2,b2

fEm,b1fA2,b2 = fEm,b1A−1
2
.

Let v ∈ V , then

((v.f−1
A2,b2

).fEm,b1).fA2,b2 = (vA2 + b2 + b1)A−1
2 − b2A

−1
2

= v + b1A
−1
2

= v.fEm,b1A−1
2
.

Therefore N is a normal subgroup of A�(m, q).

Let fA2,0 ∈ K and fEm,b1 ∈ N . Then fA2,0fEm,b1 = fA2,b1A2 and thus

KN = A�(m, q). Moreover, by de�nition of N and K, the intersection

N ∩ K is the trivial group {idA�(m,q)
}. In summary, A�(m, q) = K n N .

The isomorphisms

N → (V,+), fEm,b 7→ b,

and

K → GL(m, q), fA,0 7→ A,

where b ∈ V and A ∈ GL(m, q), yield A�(m, q) ∼= GL(m, q)n V .

Before we get to the main theorem of this section, which is the theorem

of Galois, we prove the next theorem, which will be helpful in the proof of

the main result.

Theorem 2.25 Let G be a primitive permutation group of degree pm on a

�nite set Ω = {1, . . . , pm} such that a minimal normal subgroup Ñ of G is
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abelian. Let H̃ = Gx for a �xed x ∈ Ω and further, let K,N 6 A�(m, p) be

as in Lemma 2.24. Then Ñ is the unique minimal normal subgroup of G and

there exist H 6 K and an isomorphism ϕ : G → U := H n N 6 A�(m, p)

with ϕ(Ñ) = N and ϕ(H̃) = H. Additionally, the action of G on Ω and the

action of U on V := Fmp are permutationally equivalent.

Proof. Since Ñ is abelian, Ñ is solvable and by Theorem 2.17(3) the unique

minimal normal subgroup of G. Moreover, Ñ is regular on Ω, elementary

abelian and |Ñ | = pm. Further, the group H̃ acts on Ñ by conjugation. As

Ñ is regular on Ω, for each ω ∈ Ω there exists a unique α(ω) ∈ Ñ such that

xα(ω) = ω. Then α : Ω → Ñ , ω 7→ α(ω), is a bijection. Notice that α is

de�ned as in Remark 2.19, and there we already proved that α(ω)h = α(ωh)

for all h ∈ H̃. Further, as Ñ is elementary abelian, by the main theorem of

�nitely generated abelian groups we have

Ñ ∼= Cp × · · · × Cp ∼= (Fp,+)⊕ · · · ⊕ (Fp,+) ∼= (Fmp ,+) = (V,+).

Let

π : Ñ → (V,+), n 7→ nπ,

denote a group isomorphism of Ñ and (V,+) and further, let

γ : Ω→ V, ω 7→ α(ω)π

be a map from Ω to V . Since γ is the composition of α and π and both maps

are bijective, the map γ is bijective as well. We de�ne an action of G on V

by γ(ω)g := γ(ωg) for all ω ∈ Ω and all g ∈ G. Recall that we have ω = xα(ω)

for each ω ∈ Ω. Then for n ∈ Ñ we obtain

ωn = (xα(ω))n = xα(ω)n

and thus, α(ωn) = α(ω)n and

γ(ω)n = γ(ωn) = α(ωn)π = (α(ω)n)π = α(ω)π + nπ = γ(ω) + nπ (2.1)

for ω ∈ Ω and n ∈ Ñ .
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Let h ∈ H̃ be �xed. We prove that the map

φ : (V,+)→ (V,+), γ(ω) 7→ γ(ω)h

is a group automorphism. Let ω, ν ∈ Ω. Then by the de�nition of the action

of G on V and the de�nition of γ we obtain

φ(γ(ω)) + φ(γ(ν)) = γ(ω)h + γ(ν)h

= γ(ωh) + γ(νh)

= α(ωh)π + α(νh)π = (∗).

By Remark 2.19 we have

(∗) = (α(ω)h)π + (α(ν)h)π

= (α(ω)hα(ν)h)π

= ((α(ω)α(ν))h)π = (†).

As α(ω)α(ν) ∈ Ñ we have α(ω)α(ν) = α(µ) for some µ ∈ Ω. Thus

(†) = (α(µ)h)π = (α(µh))π = γ(µh) = γ(µ)h = (α(µ)π)h = (‡)

and further,

(‡) = ((α(ω)α(ν))π)h

= (α(ω)π + α(ν)π)h

= (γ(ω) + γ(ν))h = φ(γ(ω) + γ(ν)).

Further, as h is a permutation, the map φ is bijective with the inverse map

φ−1 : (V,+)→ (V,+), γ(ω) 7→ γ(ω)h
−1

.

Hence φ is a group automorphism of (V,+) and therefore lies in GL(m, p).

Let ϕ : G→ SV be the permutation representation of the action of G on
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the vector space V . As

Gγ(ω) = {g ∈ G | γ(ω)g = γ(ω)}
= {g ∈ G | γ(ωg) = γ(ω)}
= {g ∈ G | ωg = ω} = Gω

for each ω ∈ Ω and ⋂
γ(ω)∈V

Gγ(ω) =
⋂
ω∈Ω

Gω = {idG},

the action of G on V is faithful and hence ϕ is injective. Since φ is a group

automorphism we obtain H := ϕ(H̃) 6 K ∼= GL(V ). Further, by (2.1), the

element n ∈ Ñ acts on V as the translation γ(ω) 7→ γ(ω) + nπ. Hence we

obtain ϕ(Ñ) = N . In summary, ϕ is an isomorphism of G and H n N and

we obtain the permutation equivalence via the bijective map γ.

Now we have everything we need to prove the theorem of Galois.

Theorem 2.26 (Galois, [16, Kapitel II, Satz 3.6]) Let G be a transitive

permutation group of prime degree p on the �nite set Ω = {1, . . . , p}. The

following statements are equivalent:

(1) G contains a unique Sylow p-subgroup.

(2) G is solvable.

(3) G is permutationally equivalent to a subgroup of the a�ne group A�(1, p).

(4) If g ∈ G stabilizes two di�erent elements of Ω, then g = idG.

Proof. Let P be a Sylow p-subgroup of G. The group G being transitive

on Ω implies that |Ω| = p divides |G|. Additionally, |G| divides |Sp| = p!.

As p2 is not a factor of p!, the order of P is p. Furthermore, the group P

is generated by a p-cycle. In particular, P is regular on Ω. Theorem 2.16

implies that P is equal to its centralizer in the symmetric group Sp. Since G

is a subgroup of Sp, the equality also holds in G.

(1)⇒ (2): Let P be the unique Sylow p-subgroup of G. Then P is normal

in G, i.e. G = NG(P ). By Theorem 2.11 and the preliminary remark, the
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quotientG/P is isomorphic to a subgroup of the automorphism group Aut(P )

of P and since Aut(P ) is isomorphic to (Z/pZ)∗, the quotient is cyclic. Hence

G is solvable.

(2)⇒ (3): Let Ñ be a minimal normal subgroup of G. Since G is solvable,

Ñ is abelian and the claim follows from Theorem 2.25.

(3)⇒ (4): Since G is permutationally equivalent to a subgroup of A�(1, p)

and A�(1, p) is permutationally equivalent to AGL(1, p), it su�ces to prove

the claim for the matrix group AGL(1, p). Assume there exists an element(
1 0

0 1

)
6=

(
a 0

b 1

)
∈ AGL(1, p) such that

(x, 1)

(
a 0

b 1

)
= (x, 1) and (y, 1)

(
a 0

b 1

)
= (y, 1)

for di�erent (x, 1), (y, 1) ∈ M := {(z, 1) | z ∈ Fp}. Then xa + b = x and

ya + b = y and thus x(1 − a) = b = y(1 − a), implying either a = 1 and

thus b = 0, which we ruled out, or x = y. This contradicts the assumption of

(x, 1) and (y, 1) being di�erent from each other, hence the matrix stabilizes

at most one element of M .

(4)⇒ (1): We assume that G contains two distinct Sylow p-subgroups P1 and

P2. Then P1P2 is a subset of G. As both Sylow p-subgroups have cardinality

p, the intersection of P1 and P2 is {idG}. Hence, the cardinality of P1P2 is

|P1P2| =
|P1||P2|
|P1 ∩ P2|

= p2.

Therefore, p2 6 |G|. Let H = {g ∈ G | 1g = 1} be the stabilizer of 1 in G and

let R = {g ∈ G | 1g = 1, 2g = 2} be the stabilizer of 2 in H. Since we require

that no non-trivial permutation of G stabilizes more than one element of Ω,

the group R is trivial. We have |G| = |G : H||H|. By the orbit stabilizer

theorem, the index |G : H| is equal to |Ω| = p. Moreover,

|H| = |H2||2H | = |R||2H | = |2H | 6 p− 1

and thus,

p2 6 |G| 6 p(p− 1),
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a contradiction. Hence G contains only one Sylow p-subgroup.

As Theorem 2.26 states, a solvable transitive permutation group is per-

mutationally equivalent to a subgroup U of A�(1, p) and thus it is also per-

mutationally equivalent to its image A := φ(U) in AGL(1, p). Let G be

a solvable transitive permutation group on Ω = {1, . . . , p}. Let x ∈ Ω be

�xed and let P be the unique Sylow p-subgroup of G. By Theorem 2.17

and Lemma 2.24, we have G = Gx n P ∼= F n Fp, where F is a subgroup

of Aut(Fp) ∼= F∗p. Examining the subgroup structure of F yields the desired

subgroup U or its image φ(U) in A�(1, p) respectively AGL(1, p).

Example 2.27 Let p = 17 and let G be the dihedral group D34. Then

G = 〈(1, 2, . . . , 17), (1, 16)(2, 15)(3, 14)(4, 13)(5, 12)(6, 11)(7, 10)(8, 9)〉

is a solvable, transitive permutation group on Ω = {1, . . . , 17} and thus, by

Theorem 2.26, the group G is permutationally equivalent to a subgroup U

of the a�ne group A�(1, 17). We obtain the subgroup U as follows:

The unique Sylow 17-subgroup of G is C17 = 〈(1, 2, . . . , 17)〉. Moreover,

C17 is a minimal normal subgroup of G and thus, by Theorem 2.25, it is

isomorphic to the subgroup of translations in A�(1, 17), which is gener-

ated by the a�ne transformation f1,1 ∈ A�(1, 17). Further, Theorem 2.17

states that G is the semidirect product of C17 and the stabilizer Gx for

some �xed x ∈ Ω. Without loss of generality we set x = 17. The cycle

(1, 16)(2, 15)(3, 14)(4, 13)(5, 12)(6, 11)(7, 10)(8, 9) generates G17 and has or-

der 2. Hence, G17
∼= C2. As G and U are permutationally equivalent, the

subgroup of A�(1, 17), which is isomorphic to G17, stabilizes α(17) = (17, 1)

and has order 2 as well. It is easy to check that the subgroup of A�(1, 17)

generated by the a�ne transformation f16,0 ∈ A�(1, 17) has the desired prop-

erties. In summary, we obtain

G ∼= U := 〈f16,0〉n 〈f1,1〉.

Transfering both subgroups of A�(1, 17) to their images in AGL(1, 17) under
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the isomorphism φ, we also get

G ∼= A := 〈

(
16 0

0 1

)
〉n 〈

(
1 0

1 1

)
〉.

2.2 Almost simple groups

In this section we consider the non-solvable transitive permutation groups

of prime degree. We �rst prove that such groups are 2-fold transitive. This

result is due to Burnside, but we follow a proof given by Müller. Further, we

classify those groups using the theorem of Guralnick (cf. Theorem 2.38).

The following lemma is the foundation of the proof of Burnside's the-

orem. By P (`) we denote the `th derivative of a polynomial P , where

` ∈ {0, . . . , deg(P )}.

Lemma 2.28 (Müller, [21]) Let U be a non-empty, proper subset of F∗p. Let
π be a permutation of Fp such that i − j ∈ U for i, j ∈ Fp implies that

π(i) − π(j) ∈ U . Then there exist a, b ∈ Fp such that π(i) = ai + b for all

i ∈ Fp.

Proof. As i − j ∈ U implies πk(i) − πk(j) ∈ U for all k ∈ {1, . . . , |π|},
where |π| denotes the order of π in Sp, we obtain i − j ∈ U if and only

if π(i) − π(j) ∈ U . Thus, replacing U by its complement in F∗p preserves

the assumption and therefore, we may and will assume |U | 6 (p− 1)/2. Let

i ∈ Fp be �xed. For u ∈ U we have (i+u)−i ∈ U and thus π(i+u)−π(i) ∈ U .
Since π permutes the elements of Fp, the elements π(i + u) − π(i) di�er for

di�erent u ∈ U . We obtain {π(i+ u)− π(i) | u ∈ U} = U , implying that for

u ∈ U we have

π(i+ u)− π(i) = ũ = π(i) + ũ− π(i)

for some ũ ∈ U and thus, we obtain {π(i+ u) | u ∈ U} = {π(i) + u | u ∈ U}.
Moreover, we get ∑

u∈U

π(i+ u)n =
∑
u∈U

(π(i) + u)n. (2.2)

for all n ∈ N. Regarding the pairs (j, π(j)), j ∈ {1, . . . , p− 1}, as p− 1 data

points, by means of the polynomial interpolation there exists a polynomial

f(X) =
∑d

k=0 akX
k ∈ Fp[X] of degree d 6 p − 1 such that f(j) = π(j)
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for all j ∈ F∗p. Note that d 6= 0, since π is a permutation and therefore

bijective. Further, we obtain a system of linear equations in the coe�cients

ak ∈ Fp from the equation f(j) = π(j) inserting f(j) =
∑d

k=0 akj
k for all

j ∈ {1, . . . , p − 1}. As the data points are all di�erent from each other, the

system is uniquely solvable, establishing the uniqueness of f . If d = 1 then

f is of the form aX + b, which is our claim. Hence it su�ces to show that

d = 1. For each n ∈ N, set

An(X) :=
∑
u∈U

f(X + u)n −
∑
u∈U

(f(X) + u)n ∈ Fp[X].

Then by (2.2), we obtain An(i) = 0 for each i ∈ Fp. Setting S(k) =
∑

u∈U u
k

for k ∈ {1, . . . , n}, by the binomial identity we obtain∑
u∈U

(f(X + u)n − f(X)n) =
∑
u∈U

((f(X) + u)n − f(X)n)

=
∑
u∈U

(
n∑
k=1

(
n

k

)
f(X)n−kuk

)

=
n∑
k=1

(
n

k

)(∑
u∈U

uk

)
f(X)n−k

=
n∑
k=1

(
n

k

)
S(k)f(X)n−k.

Now let n be such that dn 6 p−1. All derivatives P (`), ` ∈ {0, . . . , deg(P )},
of a polynomial P ∈ Fp[X] of degree 6 p − 1 are linearly independent with

decreasing degrees. As f(X)n is a polynomial of degree dn and dn 6 p− 1,

the derivatives of f(X)n generate the vector space of polynomials in Fp[X]

with degree at most dn, that is {P (X) ∈ Fp[X] | deg(P ) 6 dn}. Hence the
monomial Xdn can be written as an Fp-linear combination of the derivatives

of f(X)n. Thus there exist elements α` ∈ Fp with 0 6 ` 6 dn, such that

Xdn =
∑dn

`=0 α`(f(X)n)(`). We obtain

∑
u∈U

((X + u)dn −Xdn) =
∑
u∈U

(
dn∑
`=0

α`(f(X + u)n)(`) −
dn∑
`=0

α`(f(X)n)(`)

)
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=
dn∑
`=0

α`

(∑
u∈U

(f(X + u)n − f(X)n)

)(`)

=
dn∑
`=0

α`

(
n∑
k=1

(
n

k

)
S(k)f(X)n−k

)(`)

=
dn∑
`=0

α`

(
n∑
k=1

(
n

k

)
S(k)(f(X)n−k)(`)

)

=
n∑
k=1

S(k)

(
dn∑
`=0

α`

(
n

k

)
(f(X)n−k)(`)

)
.

Note that
∑dn

`=0 α`
(
n
k

)
(f(X)n−k)(`) has degree at most (n−k)d. Let r > 1 be

minimal such that S(r) 6= 0. Then the degree of

∑
u∈U

((X + u)dn −Xdn) =
n∑
k=1

S(k)

(
dn∑
`=0

α`

(
n

k

)
(f(X)n−k)(`)

)

is at most d(n− r).
Assume that r 6 dn. As

∑
u∈U

((X + u)dn −Xdn) =
∑
u∈U

(
dn∑
k=1

(
dn

k

)
ukXdn−k

)

=
dn∑
k=1

(
dn

k

)
S(k)Xdn−k,

the coe�cient of Xdn−r is
(
dn
r

)
S(r). As S(r) 6= 0 and

∑
u∈U((X+u)dn−Xdn)

has degree at most d(n−r), we obtain dn−r 6 d(n−r) and therefore, d = 1.

It remains to consider the case r − 1 > dn. Further, assume that n is

maximal such that dn 6 p− 1. Then we obtain

p− 1 < d(n+ 1) 6 2dn 6 2(r − 1),

in particular, r > (p − 1)/2. Therefore, we obtain S(`) = 0 for each

` = 1, 2, . . . , (p − 1)/2. Assume that U = {u1, . . . , uk}. The correspond-

ing Vandermonde matrix V := (ui−1
j )i,j=1,...,k is invertible. Now let M be the

matrix (uij)i,j=1,...,k. Then, by the multilinearity of the determinant, it follows
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that

det(M) = det(MT ) = u1 . . . uk · det(V T ) = u1 . . . uk · det(V ) 6= 0,

since 0 /∈ U and det(V ) 6= 0. Therefore, M is invertible as well. Note

that the sum of the entries of each column j of M is equal to S(j). As

k = |U | 6 (p − 1)/2 and S(j) = 0 for j = 1, 2, . . . , (p − 1)/2, we obtain

vM = 0 for v = (1, . . . , 1) ∈ Fkp, contradicting the fact that M is invertible.

Thus, |U | > (p+ 1)/2, again a contradiction. Therefore, the case r− 1 > dn

does not occur and we are done.

Now we can prove the following theorem.

Theorem 2.29 (Burnside, [5, Chapter XVI, Theorem VII]) A transitive

permutation group G of prime degree p is 2-fold transitive or solvable.

Proof. Let G be a transitive permutation group of prime degree p. Since

|Ω| = p divides the order of G, there exists an element g of order p. Then

g is a p-cycle. Let P := 〈g〉. As P is abelian, it is solvable and therefore

permutationally equivalent to a subgroup U of A�(1, p). Then there exist

an isomorphism ϕ : P → U and a bijective map α : Ω → Fp such that

α(ωh) = α(ω)ϕ(h) for all h ∈ P . Hence we can assume that g acts on Fp such
that g(i) = i+ 1 (mod p) for all i ∈ Fp. Further, suppose that G is not 2-fold

transitive on Fp.
Let i, j ∈ Fp, i 6= j, be �xed. We de�ne

U := {π(i)− π(j) | π ∈ G} ⊆ F∗p.

Let k, ` ∈ Fp, k 6= `, such that k − ` ∈ U . Then there exists π ∈ G such

that π(i)− π(j) = k − `. Moreover, there exists m ∈ {1, . . . , p− 1} with

gm(π(i)) = π(i) +m = k and gm(π(j)) = π(j) +m = `,

implying for all σ ∈ G that

σ(k)− σ(`) = σ(gm(π(i)))− σ(gm(π(j))) ∈ U.



2.2. Almost simple groups 25

As G is not 2-fold transitive on Fp, there exist k, ` ∈ Fp, k 6= `, such

that (π(i), π(j)) 6= (k, `) for all π ∈ G. Assume that k − ` ∈ U . The same

argument as above implies that there exist π ∈ G andm ∈ {1, . . . , p−1} such
that gm(π(i)) = π(i) +m = k and gm(π(j)) = π(j) +m = `, a contradiction.

Hence k − ` /∈ U and thus U is a proper subset of F∗p. By Lemma 2.28

for each π ∈ G there exist a, b ∈ Fp with π(i) = ai + b for all i ∈ Fp.
Therefore, G is a subgroup of A�(1, p) and thus by Theorem 2.26, the group

G is solvable.

Let S be a simple and non-abelian group. Let a ∈ S. Then

γa : S → S, s 7→ sa = a−1sa,

denotes the conjugation with a. As the map S → Inn(S), a 7→ γa, is a

surjective group homomorphism with kernel Z(S) we have Inn(S) ∼= S/Z(S).

The center Z(S) is a normal subgroup of S. Since S is simple and non-abelian

we obtain Z(S) = {idS} and thus, S ∼= Inn(S) 6 Aut(S). Hence we have an

embedding of S into its automorphism group. This leads to the de�nition of

almost simple groups.

De�nition 2.30 A �nite group G is almost simple if there exists a non-

abelian simple group S such that S 6 G 6 Aut(S).

The next lemma reveals the structure of the centralizer of a non-abelian

and simple minimal normal subgroup of a transitive permutation group of

prime degree. It will be very useful in the proofs of the following results.

Lemma 2.31 Let G be a transitive permutation group of prime degree p and

let S be a minimal normal subgroup of G such that S is non-abelian and

simple. Then CG(S) = {idG}.

Proof. Let s ∈ CG(S) ∩ S and g ∈ S; then g−1sg = g−1gs = s, hence

CG(S) ∩ S is a normal subgroup of S. As S is a simple group, we have

either CG(S) ∩ S = {idG} or CG(S) ∩ S = S. If CG(S) ∩ S = S, then S is

a subgroup of CG(S) and thus abelian, which is a contradiction to the fact

that S is non-abelian. Therefore CG(S) ∩ S = {idG}.
Moreover, the group CG(S) is a normal subgroup of G = NG(S). Let M

be a minimal normal subgroup of G such thatM 6 CG(S). As G is primitive,
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the normal subgroup M is transitive on p elements by Theorem 2.14, hence

p is a factor of |M |. This is a contradiction to CG(S) ∩ S = {idG}, as p is

also a divisor of |S|. Therefore we have CG(S) = {idG}.

De�nition 2.32 Let G be a �nite group. The product of all minimal normal

subgroups of G is called the socle of G.

Lemma 2.33 Let G be an almost simple group, i.e. there exists a non-

abelian simple group S such that S 6 G 6 Aut(S). Then S is the socle of

G.

Proof. As S ∼= Inn(S) is normal in Aut(S) and G 6 Aut(S), the group S is

a normal subgroup of G as well. Let N be a minimal normal subgroup of G.

As N ∩ S is a normal subgroup of S and S is simple, we have S ∩N = S or

S ∩ N = {idG}. If N ∩ S = S, then N 6 S. Since N is a minimal normal

subgroup of G and thus normal in S as well, we obtain N = S and the claim

follows.

Now assume that N ∩ S = {idG}. As n−1s−1ns ∈ N ∩ S for some

n ∈ N and s ∈ S, we have [N,S] 6 N ∩S = {idG}, where [N,S] denotes the

commutator of the subgroups N and S of G. As the commutator is the trivial

group, we obtain N 6 CG(S), which contradicts the fact that CG(S) = {idG}
by Lemma 2.31 and N 6= {idG}. Hence the case N ∩ S = {idG} does not
occur.

Our next goal is to prove that a 2-fold transitive permutation group of

prime degree is almost simple. This result implies that every transitive per-

mutation group of prime degree is either solvable or almost simple. In order

to verify this assertion we need the concept of characteristically simple groups

and some results on this matter.

De�nition 2.34 Let G 6= {idG} be a �nite group and let U 6 G.

(1) The subgroup U is called characteristic in G if and only if Uα = U for

all α ∈ Aut(G).

(2) The group G is called characteristically simple if and only if {idG} and
G are the only characteristic subgroups of G.
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Theorem 2.35 ([16, Kapitel I, Satz 9.12]) Let G be a characteristically

simple group. Then G ∼= S1 × · · · × Sk with S1 simple and Si ∼= S1 for all

1 6 i 6 k.

Remark 2.36 Let G be a �nite group and let N be a minimal normal

subgroup of G. Then N is characteristically simple.

Finally, we prove Burnside's theorem.

Theorem 2.37 (Burnside, [5, Chapter X, Section 151-154]) A non-solvable

transitive permutation group G of prime degree p is almost simple.

Proof. Let G be a 2-fold transitive permutation group of prime degree p on a

�nite set Ω and let N 6= {idG} be a minimal normal subgroup of G. Theorem

2.8 implies that G is primitive on p elements, hence N is transitive on Ω by

Theorem 2.14. Further, N is characteristically simple by Remark 2.36. Thus

there exist simple groups S1, . . . , Sk such that N ∼= S1×· · ·×Sk and Si ∼= S1

for all 1 6 i 6 k. If N is solvable, then by Theorem 2.17, N is regular and

thus |N | = p, implying N = S1
∼= Cp. Moreover, N is the unique minimal

normal subgroup, hence the unique Sylow p-subgroup of G and therefore, by

Theorem 2.26, the group G is solvable, which is a contradition. Hence N is

non-solvable. Then S1 is non-solvable as well, hence it is non-abelian. As N

is transitive on Ω, we have p | |N |; in particular p | |S1|. If k > 2, then pk is a

factor of |N |, a contradiction to N 6 G 6 Sp. Therefore k = 1 and N = S1.

Hence G contains a non-abelian simple minimal normal subgroup N .

Now it remains to show that G 6 Aut(N). Lemma 2.31 implies that

CG(N) = {idG}. Therefore we have

G = G/{idG} = NG(N)/CG(N) ∼= U 6 Aut(N)

by Theorem 2.11 and thus, the claim follows.

In conclusion, we have N 6 G 6 Aut(N) with N non-abelian and simple;

in particular, the group G is almost simple.

Now the question arises which non-abelian simple groups listed in The-

orem 2.1 give rise to non-solvable transitive groups of prime degree. The

answer to this question is given by R. M. Guralnick in [12].
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Theorem 2.38 (Guralnick, [12]) Let S be a non-abelian simple group with

H < S and |S : H| = pa, p prime. Then one of the following statements

holds:

(1) S = An and H = An−1 with n = pa.

(2) S = PSL(n, q) and H is the stabilizer of a point or a hyperplane of Fnq .
Then |S : H| = (qn − 1)/(q − 1) = pa. (Note that n also is prime.)

(3) S = PSL(2, 11) and H = A5.

(4) S = M23 and H = M22 or S = M11 and H = M10.

(5) S = PSU(4, 2) ∼= PSp(4, 3) and H is a parabolic subgroup of S of index

27.

The proof of the above theorem uses the CFSG by distinguishing the

cases S being the alternating group, a group of Lie type or a sporadic group.

No proof of Guralnick's theorem which does not use the CFSG is known.

Hence up until today the CFSG is essential in the classi�cation of transi-

tive permutation groups of prime degree. Considering a = 1 in Guralnick's

theorem we obtain the desired groups.

Corollary 2.39 Let G be an almost simple transitive permutation group of

prime degree p, in particular, S 6 G 6 Aut(S) for some non-abelian simple

group S. Then S is one of the following groups:

(1) S = Ap;

(2) S = PSL(n, q) with p = (qn − 1)/(q − 1), where n is prime;

(3) S = PSL(2, 11) with p = 11;

(4) S = M11 with p = 11 or S = M23 with p = 23.

Proof. Let G be almost simple and let S be non-abelian and simple such that

S 6 G 6 Aut(S). Further let G be a transitive permutation group of prime

degree p on Ω. Let ω ∈ Ω be �xed. We set H := Gω. Then, by the orbit

stabilizer theorem, we have |G : H| = p. Further, H is a maximal subgroup

of G. Hence HS = H or HS = G. Since S is a subgroup of G, the action of
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S on Ω is faithful. If HS = H then S 6 H = Gω and thus every element of

S stabilizes ω, a contradiction to S being transitive on Ω, since ωS = Ω by

the de�nition of transitivity. Hence HS = G and the second isomorphism

theorem implies

p = |G : H| = |HS : H| = |S : S ∩H|.

The claim follows by applying Theorem 2.38 to S.

In the next sections of this chapter we introduce the groups S we just

determined in Corollary 2.39 and their actions. Further, for each S we search

for almost simple groups with socle S which also are transitive permutation

groups of the corresponding degree. With an outlook on to the next chapter,

we exclude the alternating groups of prime degree. As they are maximal

in the corresponding symmetric groups and the actions of both groups are

well-known, we are more interested in the other groups.

2.2.1 The almost simple groups with socle PSL(n, q)

First, we give a de�nition of the projective special linear group. For that, we

recall the de�nition of the general linear group.

De�nition 2.40 Let s be a prime and let q = sm, m ∈ N, be a power of

s. Let Fq be the corresponding Galois �eld with q elements and let V := Fnq
denote an n-dimensional vector space over Fq.

(1) We call GL(V ) := AutFq(V ) the general linear group over Fq.

(2) We call SL(V ) := {α ∈ GL(V ) | det(α) = 1} the special linear group

over Fq.

(3) The projective special linear group is de�ned as

PSL(V ) := SL(V )/Z(SL(V )),

where Z(SL(V )) := SL(V ) ∩ Z(GL(V )) = {αidV | α ∈ F∗q, αn = 1}.

As GL(V ) is the group of all Fq-linear transformations we can describe

each element of the groups just de�ned as a matrix by choosing a suitable
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basis B. The corresponding matrix group is denoted by GL(n, q), where q

is the number of elements in Fq and n is the dimension of the corresponding

row vector space V := Fnq . In particular, we have an isomorphism

GL(V )→ GL(n, q), α 7→MB(α),

where MB(α) denotes the representation of α as a matrix with basis B.

Analogously we obtain SL(n, q) ∼= SL(V ) and PSL(n, q) ∼= PSL(V ). For a

better understanding of the actions of these groups we consider the matrix

groups in the following.

De�nition 2.41 Let V := Fnq be an n-dimensional vector space over the

Galois �eld Fq, where q = sm is a prime power. We call

P(V ) := {〈v〉 | 0 6= v ∈ V }

the projective space of V .

Now we determine the number of elements of the projective space.

Lemma 2.42 Let V := Fnq . The number of elements of the projective space

P(V ) is (qn − 1)/(q − 1).

Proof. The number of elements in V \ {0} is qn − 1. As each of the one-

dimensional subspaces 〈v〉 of V consists of q − 1 non-zero elements, namely

the non-zero multiples of v, we obtain |P(V )| = (qn − 1)/(q − 1).

The group S := SL(n, q) acts on V via right matrix multiplication, hence

we can de�ne the action of SL(n, q) on the set of subspaces of V of a given

dimension. In particular, the group S acts on P(V ), which is the set of

the one-dimensional subspaces of V . There is a second permutation rep-

resentation of SL(n, q) on the (qn − 1)/(q − 1) hyperplanes of V , that are

the (n − 1)-dimensional subspaces of V . For n > 3, these two permutation

representations of SL(n, q) are not equivalent, as the next lemma shows.

Lemma 2.43 Let n and q be as above with n > 3 and G = PSL(n, q).
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Further, let H be a hyperplane of V and let

GH :=

{(
A 0

w κ

)
| A ∈ GL(n− 1, q), w ∈ Fn−1

q , κ = det(A)−1

}

be the stabilizer of H in G. Then GH does not �x any one-dimensional

subspace of V .

Proof. Let 0 6= (v, x) ∈ V with v ∈ Fn−1
q and x ∈ Fq. Assume that GH �xes

the one-dimensional subspace generated by (v, x), hence 〈(v, x)〉 = 〈(v, x).B〉
for all B ∈ GH . Thus (v, x).B = aB(v, x) with aB ∈ Fq \ {0} for all B ∈ GH .

First, let

B1 :=

(
En−1 0

w 1

)
∈ GH

with w 6= 0. Then we have aB1(v, x) = (v, x).B1 = (v + xw, x) for some

0 6= aB1 ∈ Fq. If aB1 6= 1 then we have x = 0 and therefore, v = aB1v which

leads to v = 0, which is a contradiction to the fact that (v, x) 6= 0. Assume

now that aB1 = 1. Then we obtain v + xw = v and as w 6= 0 we have x = 0.

Let

B2 :=

(
A 0

z κ

)
∈ GH

with A 6= En−1, κ 6= 1 and z 6= 0. Then aB2(v, 0) = (v, 0).B2 = (v.A, 0) and

thus aB2v = v.A, implying A = aB2En−1. Moreover, we have

B2 =

(
aB2En−1 0

z (an−1
B2

)−1

)
.

Hence each element in GH is of the form of B1 or B2, which is a contradiction.

In conclusion, the group GH does not �x any one-dimensional subspace of

the vector space V .

Set p := (qn − 1)/(q − 1). The next lemma shows that for p prime, the

center of SL(n, q) is the trivial group, hence we obtain the equality of SL(n, q)

and PSL(n, q).

Lemma 2.44 Let n and q be as above. For p = (qn − 1)/(q − 1) prime the

following statements hold:
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(1) The number n is prime and not a factor of q − 1;

(2) SL(n, q) = PSL(n, q).

Proof. (1) : Assume that n = rs for r, s ∈ N \ {0}. Set Q := qr. Then

qn − 1 = Qs − 1 = (Q− 1)(Qs−1 +Qs−2 + · · ·+Q+ 1).

As

qr − 1 = (q − 1)(qr−1 + qr−2 + · · ·+ q + 1),

we obtain q − 1 | qr − 1 and thus

qn − 1 = (q − 1)(qr−1 + qr−2 + · · ·+ q + 1)(Qs−1 +Qs−2 + · · ·+Q+ 1),

which is a contradiction to (qn−1)/(q−1) prime. Hence n is prime. Further,

as

p = (qn − 1)/(q − 1) = 1 + q + q2 + · · ·+ qn−1 > q − 1,

we have p - (q − 1).

Now assume that n | (q − 1). Then q ≡ 1 (mod n), hence

p = (qn − 1)/(q − 1) =
n−1∑
i=0

qi ≡
n−1∑
i=0

1i ≡ n ≡ 0 (mod n).

As p is prime, we have p = n and thus p | (q − 1), a contradiction. Thus n

can not be a factor of (q − 1).

(2) : The order of Z(SL(n, q)) = {aEn | a ∈ F∗q, an = 1} is gcd(n, q− 1), but

as n is prime and does not divide q − 1, we have gcd(n, q − 1) = 1, hence

SL(n, q) = PSL(n, q).

Now it is our goal to �nd all almost simple groups G with socle PSL(n, q)

which are transitive and faithful on p elements. For that, we have to examine

the automorphism group of PSL(n, q), as it is an upper bound for G.

First, we need the concept of a complement.

De�nition 2.45 Let G be a �nite group and let N be a normal subgroup

of G. A subgroup H of G is called a complement to N in G if and only if

G = HN and H ∩N = {idG}.
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The next theorem reveals the structure of Aut(PSL(n, q)).

Theorem 2.46 (Lucchini et. al., [18, Theorem 1.12]) Let q = sm with s

prime and m ∈ N and let d = gcd(n, q − 1). The group PSL(n, q) has a

complement in Aut(PSL(n, q)) if and only if gcd((q − 1)/d, d,m) = 1.

For p prime, Lemma 2.44(1) implies that d = gcd(n, q − 1) = 1, hence

gcd((q − 1), 1,m) = 1. Thus PSL(n, q) has a complement in its automor-

phism group. The next two theorems give an idea of the structure of this

complement.

Theorem 2.47 (Wielandt, [16, Kapitel V, Bemerkung 21.7]) Let G be a

transitive permutation group of prime degree p. The outer automorphism

group Aut(G)/Inn(G) is cyclic and its order is a divisor of p− 1.

Theorem 2.48 ([27, Chapter 3, Theorem 3.2]) Let q = sm, where p is prime,

m ∈ N.

(1) If n > 2 then Out(PSL(n, q)) ∼= D2 gcd(n,q−1) × Cm.

(2) If n = 2 then Out(PSL(2, q)) ∼= Cgcd(2,q−1) × Cm

As each complement of PSL(n, q) in its automorphism group is isomorphic

to the factor group

Aut(PSL(n, q))/Inn(PSL(n, q)) ∼= Aut(PSL(n, q))/PSL(n, q),

that is the outer automorphism group Out(PSL(n, q)), Theorem 2.47 im-

plies that Aut(PSL(n, q)) = PSL(n, q) o C, where C is a subgroup of Cp−1.

Hence each almost simple transitive permutation group G of prime degree p,

which satis�es PSL(n, q) 6 G 6 Aut(PSL(n, q)), is a semidirect product of

PSL(n, q) and a subgroup of C.

If q = sm is not a prime, in particular m > 2, then the automorphism

group Aut(Fq) is a cyclic group of order m. This follows from the fact that

the automorphism group of Fq = Fsm is the Galois group of the algebraic

�eld extention Fsm/Fs, which is generated by the Frobenius homomorphism

Fq → Fq, x 7→ xs. The automorphism group Aut(Fq) acts on the matrices

of PSL(n, q) via componentwise application. Thus for α ∈ Aut(Fq) and

A ∈ PSL(n, q) we have Aα = ((ai,j)i,j=1,...,n)α := (aαi,j)i,j=1,...,n.
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Lemma 2.49 Let V = Fnq be a row vector space of the Galois �eld over

q = sm elements. Let Cm denote the automorphism group of Fq. Then the

group G := PSL(n, q)o Cm̃, where m̃ is a factor of m, acts transitively and

faithfully on the (qn − 1)/(q − 1) points of P(V ) via 〈v〉Aα := 〈vAα〉, where
A ∈ PSL(n, q) and α ∈ Cm̃.

Proof. Let A,B ∈ PSL(n, q) and α, β ∈ Cm̃. As the matrices Aα and Bβ act

on the vector space V by right matrix vector multiplication and the size of

Aα and Bα is equal, we have (v.Aα).Bβ = v.(AαBβ) for a vector v ∈ V and

thus, 〈(vAα)B
β〉 = 〈vAαBβ〉. Further, we have 〈vE

idCm̃
n 〉 = 〈v〉 and therefore,

the action of G on P(V ) we de�ned above is valid.

The group G is transitive on P(V ) as PSL(n, q) 6 G and PSL(n, q) is

transitive on the elements of P(V ).

Assume that there exists an element g = Aα ∈ G such that 〈v〉Aα = 〈v〉
for all 〈v〉 ∈ P(V ). Then for all 0 6= v ∈ V , we have 〈vAα〉 = 〈v〉 which
is equivalent to vA

α
= av for some a ∈ Fq which depends on the vector v.

Then Aα maps each vector of V to one of its multiples and therefore, either

Aα = En or Aα = aEn and each v ∈ V is mapped to av. In the second case

we have Aα = aEn and thus Aα ∈ Z(SL(n, q)). Further, Lemma 2.44 implies

Aα = En. In conclusion, the action of G on P(V ) is faithful.

Let G be as in Lemma 2.49. By the next theorem and the fact that the

complement of PSL(n, q) in its automorphism group is abelian imply that

PSL(n, q) is the commutator subgroup of G. As PSL(n, q) is simple, the

group G is non-solvable.

Theorem 2.50 ([16, Kapitel II, Satz 6.10]) For n > 3 or n = 2 and q > 3,

the commutator group of both GL(n, q) and SL(n, q) is SL(n, q).

In summary, the group G is almost simple with socle PSL(n, q). Finally,

we give an example.

Example 2.51 For q = 16 and n = 2, we have (qn − 1)/(q − 1) = 17. Let

V := F2
16 be a row vector space over the Galois �eld F16. Then PSL(2, 16)

acts transitively on 17 elements by 〈v〉A = 〈vA〉 for all v ∈ V, A ∈ PSL(2, 16).

As q = 16 = 24, we have s = 2 andm = 4. Hence the automorphism group of

F16 is Aut(F16) = C4. Further, we have Aut(PSL(2, 16)) = PSL(2, 16) o C4
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and the almost simple groups S 6 G 6 Aut(S) with S = PSL(2, 16) are

PSL(2, 16), PSL(2, 16)o C2 and PSL(2, 16)o C4.

2.2.2 The almost simple groups with socle PSL(2,11)

In his Lettre testamentaire ([9]) to Chavelier, Galois proved that the groups

PSL(2, q) for q prime act transitively on q+1 elements. Further, he found out

that for PSL(2, q) to act transitively on less than q+ 1 points, the number q

must be an element of the set {2, 3, 5, 7, 11}. In this section we only consider

the group PSL(2, 11) as the other cases are taken care of in the previous

section.

Note that in this case we have (qn−1)/(q−1) = 12, hence PSL(2, 11) also

acts transitively on the points of P(F2
11) by the action de�ned in the previous

section. Nevertheless, as 12 is not a prime, this action is not of interest in

this section.

As we consider the action of PSL(2, 11) on 11 points, we regard the group

as a subgroup of the symmetric group S11 and the right notation would be

PSL(F2
11) as introduced in De�nition 2.40, but for the sake of consistency we

continue using the notation PSL(2, 11) instead of PSL(F2
11).

In this section we we will see that PSL(2, 11) is the automorphism group

of a block design. Thus, we start with a short introduction on this notion.

De�nition 2.52 Let S be a set with v elements and let B be a collection of

subsets of S such that

(1) |B| = k for every B ∈ B;

(2) for every T ⊂ S with |T | = t there are exactly λ subsets B ∈ B such

that T ⊂ B.

Then the pair (S,B) is called a t-(v, k, λ)-design. The elements of S are called

the points and the elements of B are called blocks of the design.

We will abbreviate the t-(v, k, λ)-design to block design if the values of

t, v, k and λ are clear from the context.

De�nition 2.53 Let D be a t-(v, k, λ)-design and let |B| = b. Then D is

symmetric if and only if v = b.
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De�nition 2.54 Two t-(v, k, λ)-designs D = (S,B) and D′ = (S ′,B′) with
|S| = |S ′| are isomorphic if and only if there exists a bijective map α : S → S ′

such that {{α(x) | x ∈ B} | B ∈ B} = B′. If D = D′, then α is called an

automorphism.

Remark 2.55 The automorphisms of any t-(v, k, λ)-design D form a group.

Theorem 2.56 ([14, Chapter 15, Section 15.8.2]) The group PSL(2, 11) is

the automorphism group of a 2-(11, 5, 2)-design.

Now we explain the relation between PSL(2, 11) and the 2-(11, 5, 2)-

design. With the results given in [19] by Martín and Singerman we can

construct a matrix A in GAP from which we can read a set of blocks satisfying

the requirements of a 2-(11, 5, 2)-design by looking at the entries containing

zero in each row.

Following the instructions given in [19] we obtain the following matrix:

A =



0 1 0 1 1 0 0 0 1 1 1

1 0 1 0 1 1 0 0 1 0 1

1 1 0 1 0 1 1 0 0 0 1

0 1 1 0 1 1 1 0 0 1 0

1 0 1 1 0 0 1 0 1 1 0

0 0 1 1 1 0 1 1 0 0 1

1 1 0 0 1 0 1 1 1 0 0

0 1 1 1 0 1 0 1 1 0 0

0 0 0 0 0 1 1 1 1 1 1

1 1 1 0 0 0 0 1 0 1 1

1 0 0 1 1 1 0 1 0 1 0



.

As said before, we can read a set of blocks from the entries containing

zero. For example the entries containing zero in the �rst row of the matrix

are 1, 3, 6, 7, 8, giving us the �rst block of the design. All in all, we obtain

the blocks

B1 = {1, 3, 6, 7, 8},
B2 = {2, 4, 7, 8, 10},
B3 = {3, 5, 8, 9, 10},
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B4 = {1, 4, 8, 9, 11},
B5 = {2, 5, 6, 8, 11},
B6 = {1, 2, 6, 9, 10},
B7 = {3, 4, 6, 10, 11},
B8 = {1, 5, 7, 10, 11},
B9 = {1, 2, 3, 4, 5},
B10 = {4, 5, 6, 7, 9},
B11 = {2, 3, 7, 9, 11}.

As we see, for each subset T of S with |T | = 2 there exist exactly two blocks

containing T . For instance, the set {2, 3} is contained in the two blocks

B9 and B11, whereas the set {3, 10} occurs in the blocks B3 and B7. In

conclusion, we have a 2-(v, k, λ)-design D = (S,B) with S = {1, . . . , 11} and
B = {B1, . . . , B11}. Moreover, the block design D is symmetric.

Lemma 2.57 Let G = PSL(2, 11) and let D = (S,B) be a 2-(11, 5, 2)-design.

Further, let Gs be the stabilizer of some element s ∈ S. Then Gs does not

�x any block B ∈ B.

Proof. By Theorem 2.29, the group G is 2-fold transitive on S. Hence Gs

is transitive on the remaining 10 elements of S. Assume that there exists a

block B ∈ B such that Bg = B for all g ∈ Gs. If s ∈ B then we obtain two

orbits of the action of Gs on S \ {s}, namely B \ {s}, which has length 4,

and S \B, which has length 6. This is a contradiction to the fact that Gs is

transitive on S \ {s}. If s /∈ B, the action of Gs on S \ {s} also forms two

orbits, namely the block B of length 5 and the remaining elements of S \{s}
which is an orbit of length 5 as well. Again, we have a contradiction. In

summary, the stabilizer Gs can not �x any block B ∈ B.

From the above theorem it follows that the actions of PSL(2, 11) on the

points and on the blocks of a 2-(11, 5, 2)-design are not permutationally equiv-

alent and thus this leads to two di�erent permutation representations of

PSL(2, 11) in S11.

The rest of this section is dedicated to the examination of the auto-

morphism group of PSL(2, 11) and the almost simple groups lying between
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PSL(2, 11) and Aut(PSL(2, 11)). By Theorem 2.46, the group PSL(2, 11)

has a complement C in its automorphism group. Further, by Theorem

2.48 the outer automorphism group of PSL(2, 11) is isomorphic to C2 as

in our case m = 1 and gcd(2, 10) = 2. As PSL(2, 11) is simple and non-

abelian, we can identify the group with its inner automorphism, i.e. we have

PSL(2, 11) ∼= Inn(PSL(2, 11)) and thus

C2
∼= Aut(PSL(2, 11)/Inn(PSL(2, 11)) = Aut(PSL(2, 11))/PSL(2, 11).

Hence the complement C of PSL(2, 11) in its automorphism group is iso-

morphic to C2 and we obtain Aut(PSL(2, 11)) = PSL(2, 11) o C2. As the

index of PSL(2, 11) in its automorphism group is 2, the group is maximal in

Aut(PSL(2, 11)) and thus, there exist only two possible almost simple groups

with socle S = PSL(2, 11); namely PSL(2, 11) itself and its automorphism

group PSL(2, 11)oC2. But the next theorem shows that PSL(2, 11)oC2 is

not a transitive permutation group of degree 11.

Theorem 2.58 ([17, Chapter XII, Theorem 10.13]) If G is a non-solvable

transitive permutation group of degree 11 and G is a proper subgroup of A11,

then either G = M11 or G = PSL(2, 11).

A quick check in GAP shows that Aut(PSL(2, 11)) is not a subgroup of

the symmetric group S11, hence there does not exist a non-trivial action of

Aut(PSL(n, q)) on 11 elements.

Example 2.59

gap> G := PSL(2,11);;

gap> AutG := Image(NiceMonomorphism(AutomorphismGroup(G)));;

gap> S11 := SymmetricGroup(11);;

gap> IsSubgroup(S11, AutG);

false

2.2.3 The almost simple groups with socles M11 and M23

We start with two de�ning theorems.
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Theorem 2.60 (Mathieu, [25, Kapitel 3, Satz 3.16 & De�nition 3.17]) Let

a = (1, 4)(7, 8)(9, 11)(10, 12),

b = (1, 2)(7, 10)(8, 11)(9, 12),

c = (2, 3)(7, 12)(8, 10)(9, 11),

d = (4, 5, 6)(7, 8, 9)(10, 11, 12),

e = (4, 7, 10)(5, 8, 11)(6, 9, 12),

f = (5, 7, 6, 10)(8, 9, 12, 11),

g = (5, 8, 6, 12)(7, 11, 10, 9).

Then M12 := 〈a, b, c, d, e, f, g〉 6 S12 is a sharply 5-fold transitive group of

degree 12 and M11 := 〈a, b, d, e, f, g〉 is a sharply 4-fold transitive group of

degree 11. Further, the groups M11 and M12 are called Mathieu groups of

degree 11 respectively 12 and we have the orders |M11| = 11 · 10 · 9 · 8 and

|M12| = 12 · 11 · 10 · 9 · 8.

Theorem 2.61 ([17, Chapter XII, Theorem 1.4]) Let P be the projective

space over the 3-dimensional vector space F3
4. We represent the points of

P by triples [x, y, z] 6= [0, 0, 0]. Let G = PSL(3, 4) be regarded as a 2-fold

transitive permutation group of degree 21 on the points of P . Let k be an

element of F4 with k 6= 0, 1. We put Ω = P ∪ {u, v, w} and de�ne the

following mappings s1, s2, s3, s4 of Ω into Ω:

• u.s1 = u, v.s1 = v, w.s1 = w, [x, y, z].s1 = [y, x, z];

• [1, 0, 0].s2 = u, u.s2 = [1, 0, 0], v.s2 = v, w.s2 = w, [x, y, z].s2 =

[x2 + yz, y2, z2] for [x, y, z] 6= [1, 0, 0];

• u.s3 = v, v.s3 = u, w.s3 = w, [x, y, z].s3 = [x2, y2, kz2];

• u.s4 = u, v.s4 = w, w.s4 = v, [x, y, z].s4 = [x2, y2, z2].

Then s1, s2, s3, s4 are permutations of Ω and we obtain the following groups:

(1) The group M22 := 〈G, s2〉 is a 3-fold transitive permutation group of

degree 22 on P ∪ {u} and |M22| = 48 · 20 · 21 · 22.
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(2) The group M23 := 〈M22, s3〉 is a 4-fold transitive permutation group of

degree 23 on P ∪ {u, v} and |M23| = 48 · 20 · 21 · 22 · 23.

(3) The group M24 := 〈M23, s4〉 is a 5-fold transitive permutation group of

degree 24 on P ∪ {u, v, w} and |M24| = 48 · 20 · 21 · 22 · 23 · 24.

The groupsM22, M23, M24 are called the Mathieu groups of degree 22, 23, 24

respectively. Further we have the stabilizers (M24)w = M23, (M23)v = M22

and (M22)u = PSL(3, 4).

As our goal is to determine the almost simple groups with socle M11

and M23, which are transitive of the corresponding degree, we examine the

automorphims groups of both groups. The next theorem shows that the

automorphism groups reveal no other almost simple groups with socle M11

respectively M23.

Theorem 2.62 ([17, Chapter XII, Remark 1.15]) For i = 11, 23, 24 we

have Aut(Mi) ∼= Mi and for i = 12, 22 we have |Aut(Mi) : Inn(Mi)| = 2.

As Aut(M11) ∼= M11 and Aut(M23) ∼= M23, the only almost simple tran-

sitive permutation group of degree 11 respectively degree 23 with socle M11

respectively M23 is the Mathieu group of each degree itself.

Like the group PSL(2, 11), both Mathieu groups are full automorphism

groups of t-(v, k, λ)-designs containing 11 respectively 23 points.

Theorem 2.63 ([17, Chapter XII, Remark 1.16])

(1) The Mathieu group M11 is the automorphism group of a 4-(11, 5, 1)-

design.

(2) The Mathieu group M23 is the automorphism group of a 4-(23, 7, 1)-

design.

A t-(v, k, λ)-design with λ = 1 as in Theorem 2.63 is called a Steiner

system. Both Steiner systems are not symmetric, as the 4-(11, 5, 1)-design

has 66 blocks and the 4-(23, 7, 1)-design has 253 blocks. This leads to the fact

that both Mathieu groups each only have a single permutation representation.



Chapter 3

The computation of transitive

groups of prime degree

In this chapter it is our goal to determine the non-solvable transitive permu-

tation groups of prime degree p 6 23, not using the classi�cation of �nite

simple groups. Before the CFSG was published, the classi�cation of tran-

sitive permutation groups of prime degree was an active �eld of research in

group theory. The solvable permutation groups were easily classi�ed by the

theorem of Galois, whereas the classi�cation of the non-solvable groups could

not been solved with only one theorem. Many authors studied the structure

of these groups. In [3], Brauer studied �nite groups G containing elements

a ∈ G of prime order which only commute with their own powers. His re-

sults led Fryer in [8] to the consideration of groups G generated by three

elements a, b and c which have the following properties: For a prime number

p = 2q + 1, where q also is prime, the element a is a p-cycle, b ∈ NG(〈a〉)
with b−1ãb 6= ã for all idG 6= ã ∈ 〈a〉 and |b| = q and c ∈ NG(〈b〉) with

c−1b̃c 6= b̃ for all idG 6= b̃ ∈ 〈b〉. Further, Fryer showed that these groups are

simple if they consist only of even permutations, giving Parker and Nikolai

the basis to their research on groups resembling the Mathieu group M23 in

[23]. The authors used the results of Fryer to construct generating sets which

they hoped would lead to groups that are transitive on p elements, simple,

not of order p and proper subgroups of the alternating group Ap. Here, the

prime p > 23 also was of the form 2q + 1 with q a prime. The calculations

which would decide whether a group has the desired properties were made

41
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on the UNIVAC Scienti�c Computer, Model 1103A.

However, their calculations did not produce any other group than M23.

The range of the primes p = 2q + 1 that the authors had considered was

23 up to 1823, hence 33 primes had been checked giving rise to the author's

conjecture, that a non-solvable transitive permutation group of prime degree

p = 2q + 1, where q also is prime, is alternating or symmetric.

In the next two sections we show that the ideas of Parker and Nikolai also

work for primes p = 2q + 1, where q not necessarily is a prime number. For

that, we prove our main theorem which states that non-solvable transitive

permutation groups of such degree contain elements a, b and c similiar to

the elements we described above. This result is the basis for the algorithms

we implemented to determine the non-solvable transitive permutation groups

of prime degree p 6 23. Moreover, we give an alternative way to construct

representatives of all conjugacy classes of these groups with degree up to 13

using the table of marks.

First we introduce some results which are useful to understand why our

method works.

3.1 Useful results

The �rst two theorems we introduce are well-known results by Burnside,

Schur and Zassenhaus. We use both theorems to examine the structure of

the non-solvable transitive permutation groups of prime degree in the next

section.

Theorem 3.1 (Burnside's Transfer Theorem, [16, Kapitel IV, Satz 2.6]) Let

p be prime and let G be a �nite group. Further, let P be a Sylow p-subgroup

of G such that P 6 Z(NG(P )). Then there exists a normal subgroup N of G

with G/N ∼= P .

Remark 3.2 In Burnside's Transfer Theorem the condition P 6 Z(NG(P ))

is equivalent to P 6 CG(NG(P )) as

CG(NG(P )) = {g ∈ G | gn = ng for all n ∈ NG(P )}
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and

Z(NG(P )) = {n ∈ NG(P ) | ng = ng for all g ∈ NG(P )}

and both P 6 CG(NG(P )) respectively P 6 Z(NG(P )) imply that an = na

for all n ∈ NG(P ) and for all a ∈ P .

Theorem 3.3 (Schur-Zassenhaus, [16, Kapitel I, Sätze 18.1 & 18.2]) If G is a

�nite group, and N is a normal subgroup of G such that gcd(|G/N |, |N |) = 1,

then the following statements hold:

(1) The normal subgroup N has a complement in G.

(2) If either N or G/N is solvable then all complements to N are conjugate

to each other.

The theorem of Schur-Zassenhaus yields necessary conditions for a normal

subgroup of a group G to have a complement. The next result shows which

subgroups of G are �t to be such a complement.

Lemma 3.4 Let G be a �nite group and let N be a normal subgroup of G.

Let gcd(|G/N |, |N |) = 1 and let H be a subgroup of G such that |H| = |G/N |.
Then H is a complement to N in G.

Proof. As gcd(|H|, |N |) = 1 it follows that H ∩N = {idG}. Then we obtain

|HN | = |H||N | = |G/N ||N | = |G|,

hence HN = G and the claim follows.

The next concept we introduce is a generalization of Sylow subgroups.

De�nition 3.5 Let G be a group and let π be a set of primes.

(1) A subgroup U 6 G is called a π-subgroup of G if and only if the order of

U is a product of primes in π.

(2) A subgroup H 6 G is called a Hall π-subgroup of G if and only if the

following conditions are satis�ed:

(a) The order of H is a product of primes in π,

(b) The index |G : H| is not divisible by any prime in π.
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Theorem 3.6 (Hall, [16, Kapitel VI, Satz 1.8]) If G is a �nite solvable group

and π is any set of primes, then G has a Hall π-subgroup, and any two Hall

π-subgroups of G are conjugate. Moreover, any π-subgroup of G is contained

in some Hall π-subgroup of G.

Later, we combine the concepts of Hall π-subgroups and complements to

inspect the structure of the normalizer NG(〈a〉) for a p-cycle a in a non-

solvable transitive permutation group G. We will see that each Hall π-

subgroup of G, for π the set of primes dividing p − 1, is a complement

of 〈a〉 in its normalizer and vice versa.

De�nition 3.7 Let G be a �nite group.

(1) A series Z1 > Z2 > · · · > Zr is called central series if and only if Zi is a

normal subgroup of G for all i = 1, . . . , r and Zi/Zi+1 6 Z(G/Zi+1) for

all i = 1, . . . , r − 1.

(2) The group G is called nilpotent if and only if it has a central series with

Z1 = G and Zr = {idG}.

Theorem 3.8 ([5, Chapter VIII, Section 93]) Let p be a prime and let G be

a �nite p-group. Then G is nilpotent.

Theorem 3.9 ([16, Kapitel 3, Hauptsatz 2.3]) Let G be a �nite group. Then

the following statements are equivalent:

(1) G is nilpotent;

(2) U � NG(U) for each proper subgroup U of G.

Theorems 3.8 and 3.9 will help us in the proof of the main theorem in the

next section. As U � NG(U) for each proper subgroup U of a p-group G we

can guarantee the existence of an element c ∈ NG(U) \ U .
Next, we introduce the concept of a Frobenius group.

De�nition 3.10 Let {idG} < H < G and H ∩Hg = {idG} for all g ∈ G\H.

Then G is called a Frobenius group to H and F := G \
⋃
g∈G(H \ {idG})g is

called the Frobenius kernel of G.

Theorem 3.11 ([16, Kapitel V, Satz 8.2a]) Let G be a transitive non-regular

permutation group on a �nite set Ω such that each element idG 6= g ∈ G
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stabilizes at most one point ω ∈ Ω. Let H := Gω. Then G is a Frobenius

group with complement H and the permutations of G which do not stabilize

any element of Ω together with idG form the Frobenius kernel F of G and F

is regular on Ω.

Theorem 3.12 ([16, Kapitel V, Satz 8.5]) Let G be a group and let H be a

subgroup of G. The following statements are equivalent:

(1) G is a Frobenius group to H with Frobenius kernel F .

(2) We have G = FH with H < G and F is a normal subgroup of G. Fur-

ther, the map µ : H → U , where U is a �xed point free subgroup of

Aut(F ), such that fh
µ

= h−1fh for f ∈ F and h ∈ H, is an isomor-

phism.

At least, we introduce two well-known results of Borchert and Jordan.

Later, it is our goal to show that the groups we compute with our algorithms

are maximal in the alternating group with the same prime degree p. Oth-

erwise, our algorithms would not generate all transitive permutation groups

of the given degree. Assuming there exists a group H with G 6 H � Ap,

the theorems help us to estimate all possible orders of H. Further, we check

whether G is maximal by considering the Sylow s-subgroups of H for some

prime s dividing the order of G.

Theorem 3.13 (Borchert, [16, Kapitel II, Satz 4.6]) Let G be primitive on

a �nite set Ω and let |Ω| = n and An 
 G. Then

|Sn : G| > [(n+ 1)/2]!.

Theorem 3.14 (Jordan, [17, Chapter XII, Theorem 3.7]) Let G be a prim-

itive permutation group of degree n = p + k, where p is a prime and k > 3.

If G contains a cycle of length p, then G > An.

3.2 Mathematical aspects

In this section we discuss the mathematical background of our algorithms.

Recall that we want to compute the transitive permutation groups of a given
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prime degree p = 2q+1, q ∈ N, which are non-solvable and proper subgroups
of the alternating group Ap. The results on the structure of these groups by

Fryer in [8] yield a basis. The main result of this section shows that non-

solvable transitive permutation groups of degree p contain elements a, b

and c such that a is a p-cycle, b ∈ NAp(〈a〉) and c ∈ NAp(〈b〉). In our

computations we use these elements to calculate generating sets and test

whether the corresponding groups are non-solvable and proper subgroups of

Ap.

The �rst lemma we prove shows that a Sylow p-subgroup of a permutation

group of prime degree always has a cyclic complement in its normalizer.

Lemma 3.15 Let G be a permutation group of prime degree p and let P be

a Sylow p-subgroup of G. Then P has a cyclic complement C in NG(P ) with

|C| dividing p− 1.

Proof. LetM := NG(P ). We have gcd(|M/P |, |P |) = 1, as p2 does not divide

|M |. By Theorem 3.3, the Sylow p-subgroup P has a complement C in M .

Moreover, CG(P ) = P by Theorem 2.16, since P is abelian. Then

NG(P )/CG(P ) = M/P ∼= A,

where A is a subgroup of Aut(P ) ∼= Cp−1. Since C is a complement to P in

M , we have C ∼= A, hence C is cyclic and its order divides p− 1.

As p2 does not divide the order of a transitive permutation group G of

prime degree p, the group G always contains a Sylow p-subgroup of order p.

Hence G contains a p-cycle, namely the generator of its Sylow p-subgroup

which already proves the �rst statement we want to show later, that is the

existence of a p-cycle in a non-solvable transitive permutation group of degree

p.

Lemma 3.16 Let G be a non-solvable transitive permutation group of prime

degree p and let G(i) denote the ith commutator subgroup of G. Then G(i) is

transitive on p elements for all i > 0. Moreover, p | |G(i)| for all i > 0.

Proof. Induction on i > 0.

For i = 0 the group G(0) = G is transitive on p elements by assumption.

By the orbit-stabilizer theorem we have p | |G|.
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Let i > 1 and let G(i) be transitive on p elements. As G(i+1) is a normal

subgroup of G(i), the group G(i) is either the trivial group or transitive on

p elements as well by Theorem 2.14. If G(i) is trivial, then G is solvable, a

contradiction. Hence G(i+1) is transitive and by the orbit-stabilizer theorem

we obtain p | |G(i+1)|.

The next lemma deals with the cycle type and the order of elements in

NSp(〈a〉) for a p-cycle a ∈ Sp.

Lemma 3.17 Let p = 2q + 1 be prime, q ∈ N. Further, let a ∈ Sp be a

p-cycle and b ∈ NSp(〈a〉) with r := |b|. If p does not divide r then b consists

of k disjoint r-cycles and rk = 2q.

Proof. Set P := 〈a〉. As P is normal in NSp(P ) and p2 does not divide

|NSp(P )|, the group P is the unique Sylow p-subgroup of NSp(P ). Theorem

2.26 implies that NSp(P ) is solvable and thus it is permutationally equivalent

to a subgroup U = K n N 6 A�(1, p), where N = {f0,d | d ∈ Fp} and

K 6 {fc,0 | c ∈ F∗p}. Let ϕ : U → NSp(P ) denote the isomorphism between

U and NSp(P ). Then P = ϕ(N) by Theorem 2.25.

Put B := ϕ(K). Let π be the set of all primes dividing p−1. Then |B| has
only prime factors in π as |K| divides p− 1 and |NSp(P ) : B| = |P | = p does

not contain any prime in π. Hence B is a Hall π-subgroup of NSp(P ). Let H

be a Hall π-subgroup of NSp(P ). Then by the de�nition of Hall π-subgroups

we have |H| = |NSp(P ) : P | and therefore by Lemma 3.4, the group H is a

complement of P as well. Hence each complement of P is a Hall π-subgroup

of NSp(P ) and vice versa.

As p does not divide the order of the element b, it lies in some Hall π-

subgroup of NSp(P ). Since NSp(P ) is solvable, any two Hall π-subgroups are

conjugate by Theorem 3.6, hence by replacing b with a conjugate we may

assume that b ∈ B and it is the image of ft,0 ∈ K for some t ∈ F∗p under the
isomorphism ϕ.

Then we have |ft,0| = |b| = r, hence tix 6= x for i < r and trx = x for all

x ∈ F∗p. Thus ft,0 permutes the p− 1 = 2q elements of F∗p in 2q/r =: k cycles

of length r. By the permutation equivalence, this implies our claim.

Now we prove the main result of this section.
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Theorem 3.18 Let p = 2q + 1 be prime, q ∈ N, and let G 6 Ap be a �nite

group such that

(a) G is a transitive permutation group of degree p;

(b) G is non-solvable.

Then there exist a, b ∈ G such that

(1) a is a p-cycle;

(2) b ∈ NG(〈a〉) \CG(〈a〉) and if r := |b|, then p - r, r 6= 1, and b consists of

k disjoint r-cycles with rk = 2q. Further, we have

(i) If q is odd, then r is odd;

(ii) If q is even, then k is even.

In particular, r is a factor of q.

(3) There exists a prime ` | r and b1 ∈ 〈b〉 such that 〈b1〉 is a Sylow `-subgroup
of 〈b〉 and an element c ∈ NG(〈b1〉) \ 〈b1〉 with 〈a, b1, c〉 non-solvable. If

〈b1〉 is a Sylow `-subgroup of G, then c /∈ CG(〈b1〉).

Proof. Let G be a non-solvable transitive permutation group of prime degree

p = 2q + 1, q ∈ N, such that G 6 Ap. As p divides the order of G, but p2

does not, the group G contains a Sylow p-subgroup P of order p. Further, P

is cyclic and generated by a p-cycle a, i.e. P = 〈a〉. Hence the claim in (1)

follows.

Assume that P is in the centralizer of its normalizer, i.e. P 6 CG(NG(P )).

Then Burnside's Transfer Theorem 3.1 implies that G contains a normal

subgroup N such that G/N ∼= P ; in particular, the order of N is prime to

p. As the order of G/N is p, we have gcd(|G/N |, |N |) = 1. By Lemma

3.4, the group G is the semidirect product of P and N . Let K denote the

commutator subgroup of G. As P is abelian and G/N ∼= P , it follows that

K 6 N . Hence K has order prime to p as well. This contradicts Lemma

3.16. Hence P is not a subgroup of the centralizer of its normalizer.

Put M := NG(P ). The group P is a Sylow p-subgroup of M , hence it

has a cyclic complement B in M by Lemma 3.15. We have B 6= {idG} by
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the previous paragraph, thus there exists idG 6= b ∈ B such that B = 〈b〉.
Moreover, as P is not a subgroup of CG(M) and b ∈M , we obtain b−1ãb 6= ã

for all ã ∈ P, ã 6= idG, hence b /∈ CG(P ).

Put r := |b|. As gcd(|B|, |P |) = 1 and thus p does not divide r, Lemma

3.17 implies that b consists of k := 2q/r disjoint r-cycles. As G is a subgroup

of Ap, the group G contains only even permutations and to establish the

requirements on r and k we have to distinguish between two cases.

• If q is odd then ν2(2q) = 1, where ν2(x) denotes the 2-adic valuation

of an integer x. Assume that r is even. A cycle of even length is an

odd permutation, hence the sign of each cycle of b is −1. As 2 | r, the
number k must divide q, thus k is odd as well. Therefore, the element

b consists of an odd number of odd permutations, hence sgn(b) = −1.

Then b is not an element of Ap, a contradiction. Hence r must be odd.

• If q is even then ν2(2q) > 2. If 2ν2(2q) | r, then k is odd and again,

we have an odd number of cycles of even length, hence sgn(b) = −1,

contradicting the fact that b is an element of Ap. If r is even and 2ν2(2q)

does not divide r, then k is even.

These cases lead to the following requirements on r and k for b to be an even

permutation: If q is odd, then r is odd and if q is even, then k is even. Both

cases lead to r being a factor of q, hence the claim in (2) follows.

Now we prove the statements in (3). Assume there exists a prime divisor

` of r such that the corresponding Sylow `-subgroup L of B is not a Sylow

`-subgroup of G. Further, let b1 ∈ B denote a generator of L, i.e. L := 〈b1〉.
As NG(P ) = 〈a, b〉 and |a| = p, we have ν`(|L|) = ν`(|NG(P )|). Thus L

is a Sylow `-subgroup of NG(P ). Let S be a Sylow `-subgroup of G such

that L 6 S. As S is an `-group, the group S is nilpotent by Theorem 3.8.

Moreover, by Theorem 3.9, for each proper subgroup U of S it follows that U

is a proper subgroup of its normalizer NS(U) in S. As L is a proper subgroup

of S, we can choose an element c ∈ NS(L) \ L. As NS(L) \ L is a subset of

NG(L) \ L, we obtain c ∈ NG(L) \ L. Further, as c ∈ S, its order is a power

of `.

Suppose that c ∈ NG(P ). Then 〈L, c〉 is a subgroup of NG(P ). Moreover,

it is an `-group and |〈L, c〉| > |L|, as c /∈ L. This is a contradiction to the
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fact that L is a Sylow `-subgroup of NG(P ) and thus, the element c can not

lie in NG(P ). If 〈a, b1, c〉 is solvable, then P is a normal subgroup of 〈a, b1, c〉
by Theorem 2.26 and thus, we have c ∈ N〈a,b1,c〉(P ) 6 NG(P ), which we just

ruled out. Hence 〈a, b1, c〉 is non-solvable.
Assume now for each prime divisor m of r that the corresponding Sy-

low m-subgroup is a Sylow m-subgroup of G as well. As each Sylow m-

subgroup of B is a Sylow m-subgroup of NG(P ) as well, it follows that

gcd(|NG(P )|, |G/NG(P )|) = 1. Let ` be an arbitrary prime divisor of r

and let L := 〈b1〉 denote the corresponding Sylow `-subgroup of B respec-

tively G. Assume that L is a subgroup of the centralizer of its normalizer,

i.e. L 6 CG(NG(L)). Then by Theorem 3.1, there exists a normal subgroup

N of G such that G/N ∼= L; in particular, the order of N is prime to |L|.
As L is abelian, the commutator subgroup K of G is a subgroup of N and

thus gcd(|K|, |L|) = 1. As ` was arbitrary this follows for every prime di-

visor of r and the corresponding Sylow subgroup. Hence gcd(|K|, r) = 1.

By Lemma 3.16, the order of K is divisible by p and thus, we have P 6 K.

As NK(P ) 6 NG(P ) and |NG(P )| = pr, the order of NK(P ) is p. Hence

Burnside's Transfer Theorem 3.1 applied to K and P implies that there ex-

ists a normal subgroup Ñ of K such that K/Ñ ∼= P . Since P is abelian,

the second commutator group K ′ of G lies in Ñ and thus, its order is prime

to p as well. This contradicts Lemma 3.16. Hence our assumption was

false and L is not a subgroup of the centralizer of its normalizer. Thus

there exists c ∈ NG(L) \ CG(L). Again, if 〈a, b1, c〉 is solvable, the group

P is a normal subgroup of 〈a, b1, c〉 and thus c ∈ N〈a,b1,c〉(P ). By Theorem

3.11, the group 〈a, b1, c〉 is a Frobenius group with Frobenius kernel P . Let

x ∈ P ∩ N〈a,b1,c〉(L). Then the commutator [x, y] lies in P ∩ L = {idG}
for all y ∈ L. By Theorem 3.12 we have x−1yx 6= y and thus, we obtain

x = idG. Hence P ∩N〈a,b1,c〉(L) = {idG}. Thus, the group N〈a,b1,c〉(L) lies in

the complement of P in 〈a, b1, c〉 and theorefore, it is isomorphic to a sub-

group of 〈a, b1, c〉/P . By assumption, the group 〈a, b1, c〉 is solvable, hence
N〈a,b1,c〉(L) is abelian. Then we obtain c ∈ 〈b1〉 which is a contradiction,

since c /∈ CG(〈b1〉 and 〈b1〉 6 CG(〈b1〉). Hence 〈a, b1, c〉 is non-solvable and

the claim follows.

Remark 3.19 Let b1 and b be as in Theorem 3.18. As 〈b1〉 6 〈b〉 and 〈b〉 is
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cyclic, the element b1 is a power of b; in particular, there exists t ∈ N such

that bt = b1.

The following proposition shows that the element a and the group 〈b〉 are
unique up to conjugation in Sp. This result is essential for our algorithms as

it allows us to consider only one set of generators {a, b} for each divisor of q

to obtain all groups 〈a, b, c〉 for c ∈ NAp(〈b〉) as in Theorem 3.18, which are

non-solvable transitive permutation groups of degree p = 2q + 1, q ∈ N.

Proposition 3.20 Let p = 2q+1, q ∈ N, be prime. Let ai, bi ∈ Ap, i = 1, 2,

such that

(1) a1 and a2 are p-cycles;

(2) bi ∈ NAp(〈ai〉), i = 1, 2, with |b1| = |b2| and p - |b1|.

Then there exist x ∈ Sp such that ax1 = a2 and 〈bx1〉 = 〈b2〉.

Proof. As a1 and a2 are p-cycles in Ap, they are conjugate in Sp, i.e. there

exists y ∈ Sp such that ay1 = a2. Put P2 := 〈a2〉 and M2 := NAp(P2). As P2

is the unique Sylow p-subgroup subgroup of M2, the group M2 is solvable by

Theorem 2.26. Further, we have by1, b2 ∈M2.

Let π denote the set of primes dividing (p − 1). By Lemma 3.15, the

group P2 has a complement in M2 whose order divides p− 1. As p does not

divide |b2| =: r, we obtain r | q − 1. Thus the groups 〈by1〉 and 〈b2〉 are π-
subgroups ofM2. By Theorem 3.6, each π-subgroup is contained in some Hall

π-subgroup ofM2. LetH,B2 6M2 denote Hall π-subgroups ofM2 containing

by1 respectively b2. Since gcd(|M2/P2|, |P2|) = 1 and |H| = |B2| = |M2/P2|
by de�nition, both H and B2 are complements to P2 in M2 by Lemma 3.4.

Moreover, Theorem 3.3 implies that H and B2 are conjugate in M2.

Let z = hz′ ∈ M2 = HP2, where h ∈ H and z′ ∈ P2, be such that

B2 = Hz = Hhz′ = Hz′ . Put x := yz′ ∈ Sp. Then ax1 = ayz
′

1 = az
′

2 = a2 as

z′ ∈ P2. Further, we have b
x
1 = byz

′

1 ∈ Hz′ = B2 and |b2| = |b1| = |bx1 |. As B2

is cyclic and b2, b
x
1 ∈ B2, we obtain 〈bx1〉 = 〈b2〉.

Let G1 be a transitive permutation group of prime degree p = 2q + 1,

where q ∈ N, such that G1 is non-solvable and a proper subgroup of Ap. By

Theorem 3.18 there exist elements a1, b1, c1 ∈ G such that a1 is a p-cycle,



52 Chap. 3. The computation of transitive groups of prime degree

b1 ∈ NG1(〈a1〉) 6 NAp(〈a1〉) with |b1| =: r and c1 ∈ NG1(〈b1〉) 6 NAp(〈b1〉).
Let a = (1, 2, . . . , p) and b any element in NAp(〈a〉) with |b| = r. Proposition

3.20 implies that there exist x ∈ Sp such that ax1 = a2 and 〈bx1〉 = 〈b〉. We

set c := cx1 and G := Gx
1 . Hence G1 is conjugate to G in the symmetric

group Sp. By Lemma 2.10, both groups are permutationally equivalent. As

we only want to classify the desired groups up to permutation equivalence, it

su�ces to choose the generating sets as follows: a = (1, . . . , p) and for each

r | q with r 6= 1 we choose an element b ∈ NAp(〈a〉) with |b| = r such as a

corresponding idG 6= c ∈ NAp(〈b〉). In order to obtain the desired groups we

iterate over the elements of NAp(〈b〉).

3.3 The computations

3.3.1 Veri�cation of the algorithms

Given a �xed prime number p, the goal of our computations is to determine

the non-solvable transitive permutation groups of degree p which are proper

subgroups of Ap. We take the approach introduced in the previous section

as a basis, hence the groups we check are generated by elements a, b1 and c

as described above. Our computation is divided into two parts. In the �rst

part it is our goal to determine elements b ∈ NAp(〈a〉) for a = (1, . . . , p) with

r = |b| for each r | q, r 6= 1. They are generated by Algorithm 2. These

elements are used in Algorithm 3 to calculate the desired groups. Further,

we check whether these groups are maximal in the alternating group Ap

which means that no further generator is needed to generate the transitive

permutation groups of degree p. For that, we implemented a third algorithm.

The GAP codes of the algorithms are recorded in Appendix A. This section

serves as a veri�cation of these algorithms.

Theorem 3.21 Let a = (1, . . . , p) ∈ Ap. For a prime p = 2q + 1, q ∈ N,
Algorithm 2 computes for each divisor r 6= 1 of q = (p − 1)/2 an element

idG 6= b ∈ NAp(〈a〉) with |b| = r. Further, the algorithm terminates.

Proof. If the input is not a prime or equal to 2 then there is nothing to

prove.

Let p = 2q + 1, q ∈ N, be a �xed prime number. For a list L, the GAP
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function PermList(L) returns a permutation, where i ∈ {1, . . . , Length(L)}
is mapped to L[i]. By inserting the list Concatenation([2..p],[1]), the

function generates the p-cycle a := (1, . . . , p).

Put P := 〈a〉 and N := NAp(P ). To obtain an element b ∈ NAp(P )

for each divisor r 6= 1 of q = (p − 1)/2, the algorithm takes the following

steps: First, it computes the alternating group Ap of degree p and the nor-

malizer N of P in Ap. Further, as P contains a complement in NAp(P ) by

Lemma 3.15 and as each factor r | q is not divisible by p, the elements we

want to compute lie in a Hall π-subgroup of NAp(P ), where π denotes the

set of all primes dividing q. Let H be a Hall π-subgroup of NAp(P ). Then

by de�nition we have |G/H| = |P | = p and thus gcd(|G/H|, |H|) = 1, as

H contains only primes in π and p does not divide q. By Lemma 3.4, the

group H is a complement of P in NAp(P ). Hence the desired elements lie in

a complement of P . Thus, the algorithm generates a list of representatives

of the conjugacy classes of complements of P in N by the GAP function

ComplementClassesRepresentatives(N,P). By Theorem 3.3 the comple-

ments are all conjugate, hence the list contains a single group. Let K denote

the representative. The generators of K are stored in the list gens. As K is

cyclic by Lemma 3.15 we obtain the desired elements b for each factor of q by

taking a generator g of order q and computing the powers gx for all divisors

x of q. Then gx has order q/x =: r, hence the order of gx is a divisor of q as

well. To obtain a suitable generator g the algorithm iterates over all elements

of the list gens and checks whether the order is q or not. Further, a list of all

divisors of q is computed by the GAP function DivisorsInt(q). As b is not

supposed to be the identity, we do not need to calculate the power gq, hence

we exclude q from the list of the divisors of q. For that, the algorithm needs

the GAP function ShallowCopy, since the list returned by DivisorsInt is

not mutable. For a given list, the function ShallowCopy generates a muta-

ble version of the list and the GAP function Remove removes the last entry

of it. The divisors of q are arranged in ascending order in the list given by

DivisorsInt, hence, in our case, q is removed. Let L := {x ∈ N | x | q}\{q}.
For all x in L, the algorithm computes gx and stores the elements in a list res,

which, together with the p-cycle a = (1, . . . , p) is the output of Algorithm 2.

Hence the �rst claim follows.
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The list gens of all generators of K is �nite, since K 6 Ap is �nite, and

the number of divisors of q is �nite as well. As the algorithm iterates over

both the elements of gens and all divisors of q, the algorithm terminates.

Remark 3.22 For each divisor r := q/x of q, Algorithm 2 computes an

element b = gx of order r. Now let y be another divisor of q such that x | y.
Then gy is an power of b. Hence the algorithm computes all powers of b

and thus, if r is a factor of q consisting of at least two di�erent primes, the

algorithm also computes the element b1 as in Theorem 3.18, as b1 is a power

of b by Remark 3.19.

Theorem 3.23 Algorithm 3 terminates. Moreover, given a prime number

p = 2q+1, q ∈ N, and the corresponding elements a := (1, . . . , p) and a �xed

b ∈ NAp(〈a〉) generated by Algorithm 2, the algorithm computes a list of non-

solvable transitive permutation groups of degree p, which are proper subgroups

of Ap and generated by a, b and some idAp 6= c ∈ NAp(〈b〉). Further, let H

be a non-solvable proper subgroup of Ap such that H = 〈a1, b1, c1〉, where

|a1| = p, idAp 6= b1 ∈ NAp(〈a1〉) with |b1| = |b| and idAp 6= c1 ∈ NAp(〈b1〉).
Then H is conjugate in the symmetric group Sp to a group, which is returned

by Algorithm 3 by inserting (a, b, p).

Proof. Let p = 2q + 1, q ∈ N, be a �xed prime and let a = (1, . . . , p) and

b ∈ NAp(〈a〉) be �xed elements computed by Algorithm 2 with input p.

As the alternating group A := Ap is �nite, the normalizer NA(〈b〉) is

�nite as well. Since the algorithm iterates over all elements of NA(〈b〉), it
terminates.

The if conditions in lines 3 to 11 check whether the input for Algorithm

3 is correct. For instance, it stops if the input p is not a prime number or if a

or b is an odd permutation or if one of them is not even a permutation. For

that, the algorithm uses the GAP functions IsPrimeInt and the function

IsEvenPerm whose code also is recorded in Appendix A.

Algorithm 3 generates a group G = 〈a, b, c〉 for each c ∈ NA(〈b〉) and

checks whether G is non-solvable and a proper subgroup of Ap by using the

following GAP functions: the term Size(A) <> Size(G) has boolean value

"true" if G is a proper subgroup of A. By the term not IsSolvable the

algorithm checks whether G is non-solvable. If the boolean values of all
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if conditions are "true", the group G is stored in a list res which is the

output of Algorithm 3. The groups which are generated in each step of the

for loop are all transitive on p elements as they contain 〈a〉 and transitivity

is transferred to overgroups. Further, they are faithful on p elements as

they are subgroups of Ap. Hence the list which is returned only contains

groups G = 〈a, b, c〉 which are non-solvable transitive permutation groups on

p elements and proper subgroups of A.

Let H = 〈a1, b1, c1〉 be a non-solvable transitive permutation group of

degree p with a1, b1 and c1 such that a1 is a p-cycle, idAp 6= b1 ∈ NAp(〈a1〉)
with r := |b1| = |b|, and idAp 6= c1 ∈ NAp(〈b1〉). For a = (1, . . . , p) and

b ∈ NAp(〈a〉), Proposition 3.20 implies that there exist x ∈ Sp such that

ax1 = a and 〈bx1〉 = 〈b〉. Hence H is conjugate to a group containing the

p-cycle a and b ∈ NAp(〈a〉), which is returned by Algorithm 3.

We give a simple example for p = 7. As q = 3 is prime, we obtain only

one element b ∈ NA7(〈a〉) for a = (1, . . . , 7) from Algorithm 2. Instead of

displaying all groups computed by Algorithm 3, we give a list of all elements

c ∈ NA7(〈b〉) which lead to a group satisfying our requirements. Further,

we check the computed groups for equality. If one of the computed groups

is a subgroup of another one of the same isomorphism type, then they are

equal, since they have the same size. In the following example, we see that

Algorithm 3 only computes two di�erent groups isomorphic to PSL(3, 2).

Example 3.24

gap> C := ComputationOfGenerators(7);

[(1,2,3,4,5,6,7), [(2,5,3)(4,6,7)]]

gap> a := C[1];; b := C[2][1];;

gap> T:= TransitiveGroupsViaNormalizer(a, b, 7);;

gap> L := List(T, x -> GeneratorsOfGroup(x)[3]);

[(3,5)(6,7),(2,5)(6,7),(2,3)(4,6),(2,5)(4,6),(3,5)(4,7),

(2,3)(4,7)]

gap> List(T, StructureDescription);

["PSL(3,2)", "PSL(3,2)", "PSL(3,2)", "PSL(3,2)", "PSL(3,2)",

"PSL(3,2)"]

gap> List(T, x -> IsSubgroup(x,T[1]));

[ true, false, false, true, false, true ]
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gap> List(T, x -> IsSubgroup(x,T[2]));

[ false, true, true, false, true, false ]

Theorem 3.25 Algorithm 4 terminates. Further, for a given transitive

group G of prime degree p and a prime s dividing the order of G it checks

whether there exists a transitive group H such that G 6 H � Ap with a larger

Sylow s-subgroup than G which is not the full Sylow s-subgroup of Ap.

Proof. Let G be a transitive permutation group of prime degree p such that

G is a proper subgroup of the alternating group Ap. The alternating group

Ap is �nite and thus, the normalizer NAp(S) for a Sylow s-subgroup S of G

is �nite as well. As the algorithm iterates over all elements of NAp(S) \ S, it
terminates.

Assume that there exists a group H such that G 6 H � Ap. Let T

be a Sylow s-subgroup of H with S � T . Since H � Ap and by means of

Theorem 3.14, the group T is not the full Sylow s-subgroup of the alternating

group. As T is an s-group, the group is nilpotent and by Theorem 3.9 we

have S � NT (S). Thus, there exists an element g ∈ NT (S) \ S such that the

order of g is a power of s. Further, the group 〈G, g〉 is a proper subgroup of

Ap which has a larger Sylow s-subgroup than G which is not the full Sylow

s-subgroup of Ap, namely the group 〈S, g〉.
To check whether the group 〈G, g〉 exists, the algorithm takes the follow-

ing steps: For the input G, p and s it computes the alternating group Ap, a

Sylow s-subgroup of G and its normalizer in the alternating group, namely

NAp(S). Then the algorithm computes the group 〈G, g〉 for each element

g ∈ NAp(S) \ S, whose order is a power of s, and saves it in a list L. Af-

ter the list L is completed, i.e. the for loop is done, the algorithm checks

whether the groups in L are alternating by the GAP function ForAll with

input L and the term H → Size(H) = Size(A). If the boolean value of the

ForAll function is "true", meaning that each of the groups generated by

G and an element g as above is alternating, the algorithm returns "true".

If there exists a group which is not the alternating group, then the ForAll

function returns "false" and so does Algorithm 4.

If Algorithm 4 returns "true" for each prime divisor s of |G|, then G is

maximal in the corresponding alternating group, as there does not exist any
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group H with G 6 H � Ap which has a larger Sylow s-subgroup than G and

is not the alternating group itself.

3.3.2 Results

In this section we present the results of the computations using the algo-

rithms recorded in Appendix A. The computations were carried out in the

GAP Version 4.9.1. For each prime p ∈ {7, . . . , 23} we show the results of

Algorithm 2 and the results of Algorithm 3 using the generators computed

by Algorithm 2 and further, we test whether some of the groups are equal or

subgroups of each other. The groups computed by these algorithms are all

of the form G = 〈a, b, c〉 with a, b and c as described in the previous section.

Thus for each prime p, the p-cycle (1, . . . , p) is always denoted by a and we

refer to b and c as the second respectively the third generator of a group G.

The next two remarks show how the groups we compute with our algo-

rithms relate to each other.

Remark 3.26 Let p = 2q + 1, q ∈ N. Let G = 〈a, b, c〉 and G′ = 〈a, b, c′〉
be two groups generated by Algorithm 3 for a �xed input a = (1, . . . , p) and

b ∈ NAp(〈a〉). Further, let |c| | |c′| and (c′)s = c for some s ∈ N. Then

G 6 G′.

Remark 3.27 Let p = 2q + 1, q ∈ N. Let G = 〈a, b, c〉 and G′ = 〈a, b′, c〉
be two groups generated by Algorithm 3 with input a = (1, . . . , p) and the

element b ∈ NAp(〈a〉) respectively b′ ∈ NAp(〈a〉). If (b′)s = b for some s ∈ N
then G 6 G′.

As Theorem 3.18 only states that a non-solvable transitive permutation

group of prime degree contains the elements a, b and c but not that these

elements always generate the whole group, we have to consider the fact that

we do not compute all desired groups with our algorithms. To make sure

that we do not miss any groups, we check for each resulting group G whether

it is a maximal subgroup of the alternating group with the same degree with

Theorem 3.13, Theorem 3.14 and Algorithm 4. Assuming that there exists

a group H such that G 6 H � Ap, we estimate the order of H with both

theorems. Further, for each common prime divisor of |G| and some possible

order of H, we check whether there exists a s-group in H which is larger than
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a Sylow s-subgroup of G but not the full Sylow s-subgroup of the alternating

group using Algorithm 4. If there exists such a group for some prime divisor

s, then the group G is not maximal in Ap. If for all s dividing |G| the
algorithm returns "true", then G is maximal.

Degree 7

The list of the generators a and b computed by Algorithm 2 is already given

in Example 3.24. Entering a and b into Algorithm 3, we obtain six sets

of permutations generating groups isomorphic to PSL(3, 2). The order of

NA7(〈b〉) is 18, thus a third of all tested generating sets 〈a, b, c〉 satisfy the

desired properties. As we have already seen in the example, most of the

groups the algorithm has computed are equal. In conclusion, we obtain two

groups isomorphic to PSL(3, 2); in particular the groups G1 := 〈a, b, c1〉 and
G2 := 〈a, b, c2〉, where

c1 := (3, 5)(6, 7)

and

c2 := (2, 5)(6, 7).

A quick test in GAP with the function IsConjugate shows that G1 and

G2 are not conjugate in the symmetric group S7.

Now we have to check if both resulting groups are maximal in A7. We set

G := PSL(3, 2). Assume that there exists a group H such that G 6 H � A7

and H is transitive on 7 elements. Then H is primitive and by Theorem 3.13

we obtain |S7 : H| > 4! and thus, we have |H| 6 7!/4! = 7·6 ·5. Let P := 〈a〉.
We have |NG(P )| = 7 · 3 and as the alternating group A7 does not contain a

6-cycle, the order of NH(P ) is the same. Hence the order of H is of the form

|H| = 7 · 3 · (1 + 7n), where (1 + 7n) is the number of Sylow 7-groups of H

for some n ∈ N by the Sylow theorems. As |G| = 168 = 7 ·3 ·8 and the order

of G divides the order of H, we obtain |H| = 7 · 3 · 8u and 8u = (1 + 7n) for

some u ∈ N. Further, by the estimation of the order of H due to Borchert,

we have u 6 22 · 5 = 20 and additionally, we have u ≡ 1 (mod 7).

As H is a subgroup of the alternating group A7, the order of H divides

7!/2 = 7 · 5 · 32 · 23. Since 7 = 3 + 4, Theorem 3.14 implies that H contains

no cycle of length 3 and thus the Sylow 3-subgroup of H must be a proper
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subgroup of the Sylow 3-subgroup of A7, hence we have a further restriction

of the order of H, namely |H| | 7 · 5 · 3 · 23. As |H| = |G|u, this implies u | 5.
In summary we have the following restrictions for the value of u:

(1) u | 5;

(2) u 6 20;

(3) u ≡ 1 (mod 7).

The only integer satisfying all three requirements is u = 1. Thus PSL(3, 2)

is maximal in A7 and so are the groups G1 and G2 computed by Algorithm

3.

Degree 11

As q = (p − 1)/2 = 5 is prime, we obtain only one second generator from

Algorithm 2, namely

b := (2, 5, 6, 10, 4)(3, 9, 11, 8, 7).

The normalizer of 〈b〉 in the alternating group of degree 11 contains exactly

100 elements. From the 100 groups which have been tested by Algorithm 3,

we obtain a total of 30 groups which satisfy our conditions, where 20 of them

are isomorphic to M11 and 10 are isomorphic to PSL(2, 11). By checking the

groups for equality using the GAP function IsSubgroup, we see that only

two groups from each isomorphism type remain, i.e. we have the four groups

G1 := 〈a, b, c1〉, G2 := 〈a, b, c2〉, U1 := 〈a, b, d1〉 and U2 := 〈a, b, d2〉, where

c1 := (2, 5, 10, 6)(7, 8, 9, 11),

c2 := (2, 5, 4, 10)(7, 11, 9, 8),

d1 := (2, 10)(5, 6)(7, 9)(8, 11)

and

d2 := (2, 4)(5, 10)(7, 9)(8, 11).

The groups G1 and G2 are isomorphic to M11, whereas the other two groups

are isomorphic to PSL(2, 11). Further, Remark 3.26 and the fact that c2
1 = d1
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and c2
2 = d2, lead to the following relations:

U1 6 G1 and U2 6 G2.

The groups U1 and U2 as well as G1 and G2 are not conjugate in the

symmetric group S11.

As U1 and U2 are subgroups of the groups isomorphic toM11 we only have

to check G1 and G2 for maximality in A11. Let G := M11. Again, assume

that there exists a group H such that G 6 H � A11. Then H is primitive on

11 elements as a subgroup of the alternating group and by Theorem 3.13, we

obtain |S11 : H| > 6! and thus |H| 6 11!/6! = 11 · 7 · 5 · 32 · 24. For P := 〈a〉
we have |NG(P )| = 11 ·5 and as A11 does not contain a 10-cycle, the order of

the normalizer of P in H is the same. Hence we obtain |H| = 11 ·5 ·(1+11n),

where (1 + 11n) is the number of Sylow 11-subgroups of H for some n ∈ N
due to the Sylow theorems. As the order of G divides the order of H there

exists u ∈ N such that |H| = |G|u and thus |H| = 11 · 5 · 144u, where

144u = (1 + 11n). By the estimation of the order of H above, we obtain

u 6 7 and further, we have u ≡ 1 (mod 11).

The group H is a subgroup of the alternating group of degree 11 and thus

its order is a factor of 11!/2 = 11 ·7 ·52 ·34 ·27. As 11 = 7 + 4 = 5 + 6 = 3 + 8

we obtain a further restriction by Theorem 3.14 for the order of H, namely

|H| | 11 · 5 · 33 · 27. As the order of G is 7920 = 11 · 5 · 32 · 24, the number u

must divide 3 · 23 = 24.

In summary, we obtain the following restrictions for the number u:

(1) u | 24;

(2) u 6 7;

(3) a ≡ 1 (mod 11).

Again, we have only one possible value for u, that is u = 1. Thus the

group M11 is maximal in A11 and so are the groups G1 and G2, which are

isomorphic to M11.
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Degree 13

The results of Algorithm 2 regarding the second generator are

b1 := (2, 5, 4, 13, 10, 11)(3, 9, 7, 12, 6, 8),

b2 := (2, 4, 10)(3, 7, 6)(5, 13, 11)(8, 9, 12)

and

b3 := (2, 13)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8).

The corresponding normalizers in A13 have orders 72, 1944 and 23040.

We obtain a total of 60 groups isomorphic to PSL(3, 3) using Algorithm 3

with input a, b2 and 13, hence only about 3% of the groups that have been

checked by the algorithm yield a valid group. Apparently no results occur

using b1 and b3 as second generators. For b1 this result is not surprising as

Theorem 3.18 states that there exists a prime ` dividing |b1| = 6 such that

there exists b̃1 ∈ 〈b1〉 of order ` and a corresponding c ∈ NA13(〈b̃1〉)\CA13(〈b̃1〉)
such that 〈a, b1, c〉 is non-solvable. In this case we have ` = 3 and b̃1 = b2.

From the 60 groups only four groups remain after checking them for equality.

Again, it su�ces to test whether the groups are subgroups of each other by

IsSubgroup. We have G1 := 〈a, b2, c1〉, G2 := 〈a, b2, c2〉, G3 := 〈a, b2, c3〉
and G4 := 〈a, b2, c4〉, where

c1 := (3, 9, 13)(5, 6, 8)(7, 12, 11),

c2 := (3, 7)(4, 10)(5, 11)(8, 9),

c3 := (3, 7)(4, 10)(5, 13)(8, 12)

and

c4 := (3, 6)(4, 10)(9, 12)(11, 13).

By using the GAP function IsConjugate we see that G1 and G2 as well as

G3 and G4 are conjugate in S13.

For the maximality of the groups we computed with Algorithm 3 in A13

we have to estimate the order of a group H such that G 6 H � A13 for

G := PSL(3, 3). Assume that such group H exists. Then it is primitive on

13 elements and we obtain |S13 : H| 6 7! by Theorem 3.13. This yields
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|H| 6 13!/7! = 13 · 11 · 5 · 33 · 26. As A13 does not contain a 6-cycle nor

a 12-cycle, we have |NH(P )| = |NG(P )| = 13 · 3 for P := 〈a〉. The order

of G, which is a factor of the order of H, is 5616 = 13 · 33 · 24 and thus,

the order of H has the following form: |H| = 13 · 3 · 144u for some u ∈ N.
Further, 144u = 1 + 13n for n ∈ N and thus, we have u ≡ 1 (mod 13) and

u 6 11 · 5 · 22 = 220.

Additionally, the order of H divides the order of the group A13, namely

13!/2 = 13 ·11 ·7 ·52 ·35 ·29 and as 13 = 7 +6 = 5+ 8 = 3 +10, we obtain the

following restriction: |H| | 13 · 11 · 5 · 34 · 29, implying u | 11 · 5 · 3 · 25 = 5280

as |H| = |G|u.
Finally, we have three requirements on u:

(1) u | 5280;

(2) u 6 220;

(3) u ≡ 1 (mod 13).

We obtain u ∈ {1, 40, 66}. If u = 1 there is nothing to prove. As the prime

factors of G are 2, 3 and 13 and 2 and 3 also are prime factors of 40 and 66,

it su�ces to use Algorithm 4 with input 2 and 3 for each Gi, i = 1, 2, 3, 4,

computed by Algorithm 3. In all 8 cases the Algorithm returns "true"

meaning there does not exist a group H such that G 6 H � A13.

Degree 17

Here, we obtain three possible second generators from Algorithm 2. The

results are

b1 := (2, 10, 14, 16, 17, 9, 5, 3)(4, 11, 6, 12, 15, 8, 13, 7),

b2 := (2, 14, 17, 5)(3, 10, 16, 9)(4, 6, 15, 13)(7, 11, 12, 8)

and

b3 := (2, 17)(3, 16)(4, 15)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10).

Algorithm 3 computes a total of 176 generating sets which satisfy our re-

quirements, where 28 of the groups obtained from the sets are isomorphic to
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PSL(2, 16), whereas 52 groups are isomorphic to PSL(2, 16)oC2. The groups

isomorphic to PSL(2, 16)oC4 have the highest share; a total of 96 groups are

isomorphic to PSL(2, 16)o C4. It is worth mentioning that b3 yields groups

of every isomorphism type, whereas b2 only generates groups isomorphic to

PSL(2, 16)oC2 and to PSL(2, 16)oC4 and b1 only is a generator of groups

isomorphic to PSL(2, 16) o C4. The orders of the corresponding normaliz-

ers NA17(〈b1〉), NA17(〈b2〉) and NA17(〈b3〉) are 256, 6144 and 5160960, hence

there exists only a small amount of generating sets satisfying our require-

ments, comparing the numbers of the groups which have been returned by

Algorithm 3 to the number of groups which actually have been tested. After

having checked the groups of the same isomorphism type computed by Algo-

rithm 3 for equality, we see that only two groups remain of each type. The

groups isomorphic to PSL(2, 16) are U1 := 〈a, b3, c1〉 and U2 := 〈a, b3, c2〉,
where

c1 := (2, 3)(4, 8)(5, 13)(6, 14)(7, 10)(9, 12)(11, 15)(16, 17)

and

c2 := (2, 3)(4, 9)(5, 12)(6, 8)(7, 14)(10, 15)(11, 13)(16, 17).

Let

d1 := (2, 17)(3, 16)(4, 15)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10)

and

d2 := (3, 4)(5, 14)(6, 9)(7, 12)(10, 13)(15, 16).

Then the two groups of isomorphism type PSL(2, 16)oC2 areH1 := 〈a, b2, d1〉
and H2 := 〈a, b2, d2〉. At least, the groups isomorphic to PSL(2, 16)oC4 are

G1 := 〈a, b1, e1〉 and G2 := 〈a, b1, e2〉, where

e1 := (2, 4, 17, 15)(3, 12, 16, 7)(5, 13, 14, 6)(8, 9, 11, 10)

and

e2 := (2, 4, 14, 6, 17, 15, 5, 13)(3, 12, 10, 8, 16, 7, 9, 11).
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Further, by means of Remark 3.26 and Remark 3.27 we obtain the following

relations between these six groups:

U2 6 H1 6 G1 and U1 6 H2 6 G2.

A quick check in GAP with the function IsConjugate shows that for

each isomorphism type the two groups generated by our algorithm are not

conjugate in the symmetric group of degree 17.

Due to the relations we just made out above, it su�ces to show that

G1 and G2 are maximal in A17. Both groups are isomorphic to the group

G := PSL(2, 16)n C4. Assume that there exists H such that G 6 H � A17.

As H is a subgroup of A17 and the alternating group is primitive on 17

elements, so is H. Thus, by Theorem 3.13, we obtain |S17 : H| > 9! and

further, we have |H| 6 17!/9! = 17 · 13 · 11 · 7 · 52 · 32 · 28. The order of G

is 16320 = 17 · 5 · 3 · 26 and as A17 does not contain a 16-cycle, the order of

NH(P ) is equal to the order of NG(P ) for P := 〈a〉, which is 17 ·8. We obtain

|H| = 17 · 8 · 120u for some u ∈ N such that 120u = 1 + 17n for n ∈ N. In
particular, we have |H| = |G|u and by the restriction of |H| due to Theorem
3.13, we get u 6 13 ·11 ·7 ·5 ·3 ·22 = 60060. Further, we have u ≡ 1 (mod 17).

As the order of H divides 17!/2 = 17 · 13 · 11 · 72 · 53 · 35 · 214 and since

17 = 13 + 4 = 11 + 6 = 7 + 10 = 5 + 12 = 3 + 14, Theorem 3.14 implies

that the order of H divides 17 · 7 · 52 · 35 · 214. With |G|u = |H|, we obtain
u | 7 · 5 · 34 · 28 = 725760. In conclusion, we have

(1) u | 725760;

(2) u 6 60060;

(3) u ≡ 1 (mod 17).

With GAP we calculate all numbers sastisfying the three requirements

and we obtain the following values

u ∈ {1, 18, 35, 120, 256, 324, 630, 1344, 2160, 8960, 11340, 24192}.

The common prime factors of |G| and all possible values for u together are

2, 3 and 5. Thus it su�ces to check these primes together with the groups
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G1 and G2 using Algorithm 4. For all cases, the algorithm returns "true"

and thus, both groups are maximal in the alternating group A17.

Degree 19

The second generators we obtain using Algorithm 2 are the permutations

b1 := (2, 5, 17, 8, 10, 18, 12, 7, 6)(3, 9, 14, 15, 19, 16, 4, 13, 11)

and

b2 := (2, 8, 12)(3, 15, 4)(5, 10, 7)(6, 17, 18)(9, 19, 13)(11, 14, 16).

In both cases, Algorithm 3 returns an empty list, which means that the

algorithm does not �nd any transitive permutation groups of degree 19 which

are non-solvable and proper subgroups of A19. As we know from the results

following from the CFSG, there are no non-solvable transitive permutation

groups of degree 19 other than the alternating and symmetric groups of

degree 19. Hence the output of Algorithm 3 agrees with the result obtained

from the CFSG.

Degree 23

Algorithm 2 yields the permutation

b := (2, 3, 5, 9, 17, 10, 19, 14, 4, 7, 13)(6, 11, 21, 18, 12, 23, 22, 20, 16, 8, 15)

as second generator. Entering a and b, Algorithm 3 computes a total of 88

groups which are all isomorphic to the Mathieu group M23. As the order of

NA23(〈b〉) is 1210, approximately 7% of the generating sets which have been

checked satisfy our requirements. Again we have checked whether the groups

generated by the algorithm are subgroups of each other to exclude the sets

which generate the same group. In the end, we obtain only two di�erent

groups isomorphic to M23, namely G1 := 〈a, b, c1〉 and G2 := 〈a, b, c2〉, where

c1 := (3, 9, 7, 10, 17)(4, 5, 19, 14, 13)(8, 23, 12, 11, 18)(15, 16, 21, 22, 20)
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and

c2 := (2, 7, 9, 14, 4)(5, 17, 13, 19, 10)(8, 23, 12, 11, 18)(15, 16, 21, 22, 20).

The two groups are not conjugate in the symmetric group S23.

Now it remains to show that both resulting groups are maximal in A23.

We set G := M23. We further assume that there exists a group H such that

G 6 H � A23. Then H is primitive on 23 elements due to the primitivity

of the alternating group. By Theorem 3.13 we obtain |S23 : H| > 12! and

thus |H| 6 23!/12! = 23 · 19 · 17 · 13 · 11 · 72 · 52 · 32 · 29. Further, we have

|G| = 10200960 = 23 · 11 · 7 · 5 · 32 · 27 and as A23 does not contain a 22-cycle,

we have |NH(P )| = |NG(P )| = 23 · 11 for P := 〈a〉. Additionally, there

exists u ∈ N such that the order of H is |H| = |G|u = 23 · 11 · 40320u and

40320u = 1 + 23n for some n ∈ N due to the Sylow theorems. Therefore, we

obtain u 6 19 · 17 · 13 · 7 · 5 · 33 · 23 = 31744440 and further, u ≡ 1 (mod 23).

As H is a subgroup of the alternating group A23, the order of H divides

23!/2 = 23 · 19 · 17 · 13 · 112 · 73 · 54 · 39 · 218. We have

23 = 19 + 4 = 17 + 6 = 13 + 10 = 11 + 12 = 7 + 16 = 5 + 18 = 3 + 20.

Thus Theorem 3.14 implies that the Sylow s-subgroup of H is a proper

subgroup of the Sylow s-subgroup of A23 for all s ∈ {3, 5, 7, 11, 13, 17, 19}.
Then we obtain |H| | 23 · 11 · 72 · 53 · 38 · 218 and �nally, the number u is a

divisor of 7 · 52 · 36 · 211 = 261273600.

In summary, we have

(1) u | 261273600;

(2) u 6 31744440;

(3) u ≡ 1 (mod 23).

With GAP we calculate the possible values for u and we obtain

u ∈ {1, 24, 70, 162, 300, 576, 1680, 2025, 2048, 3888, 7200, 11340, 13824, 25600,

40320, 48600, 93312, 172800, 272160, 967680, 1166400, 4147200, 6531840}.
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The common prime factors of |G| and all possible values for u are 2, 3, 5 and

7, thus it su�ces to check the maximality of G1 and G2 using Algorithm 4

with these primes as input. The result of all runs of the algorithm is true

and thus both groups are maximal in the alternating group A23.

Regarding the present results from our computations it is conspicuous that

for each degree p ∈ {7, 11, 13, 17, 23} only two groups of the same isomor-

phism type remain after checking all computed groups for equality. The

results agree with the fact that alternating group of each degree p has two

conjugacy classes of the maximal subgroups isomorphic to the groups we

computed, which can be checked with GAP. Thus, the groups listed in the

subsections above are representatives of the two conjugacy classes.

3.4 An alternative using tables of marks

In this section we discuss an alternative method to compute transitive per-

mutation groups of degree at most 13. This method also does not use the

classi�cation of �nite simple groups. Recall that every permutation group on

the �nite set Ω = {1, . . . , n} is isomorphic to a subgroup of the symmetric

group Sn. The basic idea of this method is to use the table of marks of Sn

to obtain a set of representatives for the conjugacy classes of subgroups of

Sn and then to check whether the representative is transitive on Ω or not.

This approach is rather naive and, since the table of marks of a symmetric

group is only precomputed up to a degree of 13 (in GAP, Version 4.9.1), it

is not very useful for an attempt to classify transitive permutation groups in

general. Nevertheless, it covers the transitive permutation groups of small

degree and in particular the groups of small prime degree p ∈ {5, 7, 11, 13}.
The computation can be carried out in the computer algebra system GAP

or any other computer algebra system containing a library of table of marks.

First, we give a short introduction to tables of marks. Since it is not the

purpose of this section to go in-depth we refer to [5] or [24] for more infor-

mation on this matter. The concept of a table of marks was �rst introduced

by Burnside in the second edition of his book [5, Chapter XII, Section 180].

The table of marks of a �nite group G describes the partially ordered set of
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all conjugacy classes of subgroups of G.

De�nition 3.28 Let G be a �nite group.

(1) Let Ω be a �nite G-set and let U be a subgroup of G. The mark βΩ(U)

of U on Ω is de�ned as

βΩ(U) = |FixΩ(U)|,

where FixΩ(U) is the set of �xed points of the subgroup U on Ω.

(2) The table of marks of G is the square matrix

M(G) = (βGi\G(Gj))i,j,

where Gi \G = {Gig | g ∈ G} and both Gi and Gj run through a system

of representatives of the conjugacy classes of subgroups of G.

Recall that for each subgroup U of G, the group G acts transitively on

the set of right cosets of U via right multiplication. Therefore, the quotients

Gi \G mentioned in De�nition 3.28(2) are transitive G-sets.

Remark 3.29 ([24]) If Ω and Λ are isomorphic G-sets of a group G, we have

βΩ(U) = βΛ(U) for all U 6 G. Moreover, the marks of U and its conjugate

U g are equal for all U 6 G.

The table of marks of a group G encodes a lot of its properties, in par-

ticular with respect to its subgroups. For instance we obtain access to the

subgroup lattice of G through the group's table of marks. Here, it is impor-

tant to note, that in [24] Pfei�er introduces a way to calculate the table of

marks of a group G without knowing the whole subgroup lattice of G.

Lemma 3.30 Let G be a group, and let Gi and Gj be representatives of two

distinct conjugacy classes of subgroups of G. Then βGi\G(Gj) 6= 0 if and only

if Gi contains a conjugate of Gj.

Proof. If βGi\G(Gj) 6= 0, there exists an element g ∈ G such that Gigx = Gig

for all x ∈ Gj. Hence gxg
−1 ∈ Gi for all x ∈ Gj. Then gGjg

−1 6 Gi.

If gGjg
−1 6 Gi, then gxg

−1 ∈ Gi for all x ∈ Gj. Hence we get Gigxg
−1 = Gi
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and therefore Gigx = Gig for all x ∈ Gj. Then Gig ∈ FixGi\G(Gj) and in

particular, βGi\G(Gj) > 1.

Other properties of the table of marks of a group G are listed in the

following lemma. Here, we assume that the conjugacy classes of subgroups

of G are arranged ascendingly by their orders in the table.

Lemma 3.31 ([24]) Let U, V 6 G be subgroups of G. Then the following

statements hold:

(1) The �rst entry of each row of M(G) is the index of the corresponding

subgroup, i.e.

βU\G({idG}) = |G : U |.

(2) The diagonal entry is the index of U in its normalizer in G, i.e.

βU\G(U) = |NG(U) : U |.

(3) The length of the conjugacy class [U ] of U is given by

|[U ]| = |G : NG(U)| =
βU\G({idG})
βU\G(U)

.

(4) The number of conjugates of U that contain V is given by

|{U g | g ∈ G, V 6 U g}| =
βU\G(V )

βU\G(U)
.

Example 3.32 Table 3.1 provides an example of a table of marks M(S4)

for the symmetric group S4. The 11 conjugacy classes of subgroups of S4

are denoted by {idS4}, C2, C2∗, C3, D4, C4, D4∗, S3, D8, A4 and S4,

where C2 = 〈(1, 3)〉 and C2∗ = 〈(1, 3)(2, 4)〉 are the subgroups of order 2,

and D4 = 〈(1, 3), (1, 3)(2, 4)〉 and D4∗ = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 are the

subgroups of order 4. The other subgroups of S4 are denoted as usual.

As Lemma 3.30 states, we can read o� the subgroup lattice of S4 fromM(S4)

by looking at the non-zero entries of the table. For instance we see that

{idS4}, C2∗, C3, D4∗ and A4 are subgroups of the alternating group A4.

Further, we obtain the index of every subgroup, respectively its conjugate,
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Table 3.1: Table of marks M(S4)

{idS4} C2∗ C2 C3 D4∗ C4 D4 S3 D8 A4 S4

{idS4} \ S4 24
C2 ∗ \S4 12 4
C2 \ S4 12 . 4
C3 \ S4 8 . . 2
D4 ∗ \S4 6 6 . . 6
C4 \ S4 6 2 . . . 2
D4 \ S4 6 2 2 . . . 2
S3 \ S4 4 . 2 1 . . . 1
D8 \ S4 3 3 1 . 3 1 1 . 1
A4 \ S4 2 2 . 2 2 . . . . 2
S4 \ S4 1 1 1 1 1 1 1 1 1 1 1

in G from the �rst entries of each row. To give an example, the index of C3

in S4 is |S4 : C3| = 8, which is equal to M(S4)4,1.

The most basic idea to compute all transitive permutation groups of prime

degree p ∈ {4, . . . , 13} is to derive all subgroups of Sp and to check whether

they are transitive.

As conjugate groups are permutationally equivalent by Lemma 2.10, it

su�ces to examine a representative of each conjugacy class of the subgroups

of Sp. The library of table of marks provides several functions to determine

these representatives. The GAP code using these functions to obtain the

transitive permutation groups of degrees 4 to 13 is recorded in Appendix B.

Theorem 3.33 Algorithm 5 terminates and computes a list of representa-

tives of all transitive permutation groups for a given degree n ∈ {4, . . . , 13}.

Proof. Since Sn is �nite, the table of marks and the number of subgroups

of Sn is �nite as well. Therefore, the algorithm terminates. For n < 4

and n > 13, there is nothing to prove. For n ∈ {4, . . . , 13} the function

GeneratorsSubgroupsTom in line 8 returns a list of length two. The �rst

entry contains a list L of all possible generators of the representatives of the

conjugacy classes of subgroups, whereas the second entry is a list containing

at position i a list of positions in L of generators of a representative in class i.

An example is given in Example 3.34. In the for loop iterating over the con-
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jugacy classes contained in the second entry, the code generates a representa-

tive for each conjugacy class of the subgroups of Sn by constructing a group

from the generators. Having generated a representative U , the algorithm

checks whether it is transitive on {1, . . . , n} via IsTransitive(U,[1..n])

in line 18. If the boolean value of IsTransitive is "true", the represen-

tative U is added to a list, which is the output of the algorithm. As U is

permutationally equivalent to all its conjugates, the list is complete at the

end of the for loop. In summary, Algorithm 5 returns a list of represen-

tatives of all transitive permutation groups of degree n and thus the claim

follows.

Example 3.34

gap> s4 := SymmetricGroup(4);

gap> tom := TableOfMarks(s4);

TableOfMarks(Sym([1..4]))

gap> generators := GeneratorsSubgroupsTom(tom);

[[(3,4),(2,3,4),(1,2),(1,2)(3,4),(1,3)(2,4),(1,3,2,4),(1,2,3,4),

(1,2)], [[],[4],[1],[2],[4,5],[1,3],[4,6],[2,1],[1,3,5],[4,5,2],

[7,8]]]

The next example shows that the output of Algorithm 5 is equal to the

output of the known GAP function using the CFSG constructed by Hulpke

in [15].

Example 3.35

gap> L := TransitiveGroupsViaMarks(4);

[Group([(1,2)(3,4),(1,3)(2,4)]), Group([(1,2)(3,4),(1,3,2,4)]),

Group([(3,4),(1,2),(1,3)(2,4)]),

Group([(1,2)(3,4),(1,3)(2,4),(2,3,4)]),

Group([(1,2,3,4),(1,2)])]

gap> NrTransitiveGroups(4);

5

gap> M := List([1..5], x -> TransitiveGroup(4,x));

[C(4)=4; E(4) = 2[x]2, D(4), A4, S4]

gap> List(L, StructureDescription);

["C2 x C2", "C4", "D8", "A4", "S4"]
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gap> List(M, StructureDescription);

["C4", "C2 x C2", "D8", "A4", "S4"]



Appendix A

Transitive groups via normalizer

This appendix serves to record the GAP codes of the algorithms used to com-

pute the non-solvable transitive permutation groups of small prime degrees

which are proper subgroups of the corresponding alternating groups. For an

explanation of the individual GAP functions used in the codes we refer to

[10].

Since we require the groups to be subgroups of the alternating group,

we have to check that only even permutations are used. Thus, Algorithm 1

checks if a given object is an even permutation.

input : An object g.
output: True, if g is an even permutation; false, if g is neither a

permutation nor an odd permutation.
1 IsEvenPerm := function(g)
2 if IsPerm(g) = true and SignPerm(g) = 1 then
3 return true;
4 else
5 return false;
6 �;
7 end;

Algorithm 1: Check for even permutations

73
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input : A prime number p > 3.
output: A list, where the �rst entry is the p-cycle a = (1, . . . , p) and

the second entry is a list of permutations [b1, . . . , bn], where
bi ∈ NAp(〈a〉) for all 1 6 i 6 n.

1 ComputationOfGenerators := function(p)
2 local q, res, a, P, A, N, C, K, L, gens, i, g;
3 if p = 2 or not IsPrimeInt(p) then
4 return "Wrong input!";
5 �;
6 q := (p− 1)/2;
7 a := PermList(Concatenation([2 .. p],[1])); # returns p-cycle (1, .., p)
8 P := Group(a);
9 A := AlternatingGroup(p);
10 N := Normalizer(A,P );
11 C := ComplementClassesRepresentatives(N ,P ); # list of

representatives of conjugacy classes of complements of P in N
12 K := C[1]; # C contains only a single group by Schur-Zassenhaus
13 gens := GeneratorsOfGroup(K);
14 for i in [1..Length(gens)] do # search for a generator of order q
15 if Order(gens[i]) = q then
16 g := gens[i];
17 �;
18 od;
19 L := ShallowCopy(DivisorsInt(q)); # mutable list of all divisors of q
20 Remove(L); # removes the last entry of the list L, which is q, as

gq = id
21 res := List(L, x→ g∧x);
22 return [a, res];
23 end;

Algorithm 2: Algorithm to compute the elements a and b
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input : The p-cycle a = (1, . . . p), a permutation b ∈ NAp(〈a〉) and
the corresponding prime number p.

output: A list of all subgroups of Ap which are generated by
elements a, b and c as in Theorem 3.18.

1 TransitiveGroupsViaNormalizer := function(a, b, p)
2 local res, g, G, N, A, B;

# check if input a, b, p is correct
3 if not IsPrimeInt(p) or p = 2 then
4 return "Wrong input for p!";
5 �;
6 if not IsEvenPerm(a) then
7 return "Wrong input for a!";
8 �;
9 if not IsEvenPerm(b) then
10 return "Wrong input for b!";
11 �;
12 res := [];
13 A := AlternatingGroup(p);
14 B := Group(b);
15 N := Normalizer(A,B);
16 for g in N do # iteration over all elements of NA(B)
17 G := Group(a, b, g);
18 if Size(G) <> Size(A) then # check if G 6= Ap
19 if not IsSolvable(G) then

# check if G is non-solvable
20 Add(res, G);
21 �;
22 �;
23 od;
24 return res;
25 end;

Algorithm 3: Algorithm to determine all subgroups of Ap which are
generated by a, b and c as in Theorem 3.18
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input : A group G generated by Algorithm 3, its prime degree p
and a prime s dividing the order of G

output: True, if there exists no group G 6 H � Ap with a larger
Sylow s-subgroup than G other than the alternating group;
false, if there exists a group H such that G 6 H � Ap

1 IsMaximalInAlternatingGroup := function(G, p, s)
2 local A, S, N, L, g, H, o, gens;
3 if not IsGroup(G) or not IsPrimeInt(p) or not IsPrimeInt(s) then
4 return "Wrong input!";
5 �;
6 L := [];
7 A := AlternatingGroup(p);
8 S := SylowSubgroup(G, s);
9 N := Normalizer(A, S);
10 for g in N do
11 if not g in S then # S is a proper subgroup of N
12 o := Order(g);
13 if IsPrimePowerInt(o) and s in PrimeDivisors(o) then

# g lies in Sylow s-subgroup of A
14 gens := ShallowCopy(GeneratorsOfGroup(G));
15 Add(gens, g);
16 H := Group(gens);

# potential group between G and A
17 Add(L,H);
18 �;
19 �;
20 od;
21 if ForAll(L, H → Size(H) = Size(A)) then
22 return true; # there exists no group between G and A
23 else
24 return false;

# there exists a group between G and H with larger Sylow
s-subgroup than G

25 �;
26 end;

Algorithm 4: Algorithm to check whether a group generated by Al-
gorithm 3 is maximal in the alternating group



Appendix B

Transitive groups via marks

In this appendix we introduce the GAP code using tables of marks to compute

representatives of all transitive permutation groups of prime degree from 5

up to 13. For an explanation of individual GAP functions used in the code

we refer to [10]. The code can also be used to compute transitive groups of

composite degree from 4 to 13 as it does not distinguish between primes and

composite numbers.

77
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input : An integer n ∈ {4, . . . , 13}.
output: A list of representatives of all transitive permutation groups

of degree n.
1 TransitiveGroupsViaMarks := function(n)
2 local tom, generators, elements, classes, G, temp, L, res, i, j;
3 if n > 13 or n < 4 then
4 return "Wrong input!";
5 �;
6 res := [];
7 if n = 4 then
8 tom := TableOfMarks(SymmetricGroup(4));

# GeneratorsSubgroupsTom("S4") returns intransitive
representatives of the conjugacy classes of subgroups, hence we
can not use the precomputed table of marks of S4

9 else
10 tom := TableOfMarks(Concatenation("S", String(n)));

# retrieve the precomputed table of marks
11 �;
12 generators := GeneratorsSubgroupsTom(tom);
13 elements := generators[1];

# a list of all possible generators of the representatives of the
conjugacy classes of subgroups

14 classes := generators[2];
# a list, where at position i there is a list of positions in elements,
which generate the representative of the ith conjugacy class

15 for i in [2..Length(classes)] do
# computation of each representative of conjugacy classes of
subgroups of Sn except for {idSn}

16 temp := classes[i];
17 L := [];
18 for j in [1..Length(temp)] do
19 Add(L, elements[temp[j]]);

# generating set of representative of current conjugacy
class

20 od;
21 G := Group(L);
22 if IsTransitive(G,[1..n]) then # check if G is transitive
23 Add(res, G);
24 �;
25 od;
26 return res;
27 end;

Algorithm 5: Transitive groups of degree up to 13 using table of
marks
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