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Abstract. We determine the elementary divisors, and hence the rank over

an arbitrary field, of the incidence matrix of the classical unital.

1. Introduction

A unital is a Steiner system with parameters 2, m + 1, and m3 + 1. This is a
collection L of subsets of cardinality m + 1 of a point set P of cardinality m3 + 1
such that any two distinct points of P are contained in exactly one element of L.
The elements of L are called the lines of the unital. An example is provided by
the set U of isotropic points of the projective plane P2(Fq2), with respect to a non-
degenerate Hermitian form. A line of this classical or Hermitian unital consists of
a set of collinear isotropic points. In this case m = q.

Given a finite incidence structure, one is often interested in the rank of its in-
cidence matrix (over some field). For example, such an incidence matrix can be
viewed as the generator matrix of a code, whose dimension is to be determined.
Also, these ranks can be used to distinguish between incidence structures with the
same set of parameters.

In this paper we determine the rank, over an arbitrary field, of the incidence
matrix of the classical unital, thus proving a conjecture of Andriamanalimanana
[2]. The same conjecture arose in a different context in the work of Geck [8], who
established a close connection between the rank of this incidence matrix and a
certain decomposition number of the 3-dimensional unitary group.

It is not hard to see that the incidence matrix of the classical unital U has
full rank over the rational numbers. Thus its elementary divisors are the structural
invariants of a finite abelian group A. Experimental evidence led Geck to a question
on the elementary divisors of the incidence matrix, i.e., the structure of A: Is it
true that A ∼= [Z/(q+ 1)Z]q

2−q+1 (see [8, p. 583])? We also show in this paper that
Geck’s question has a positive answer.

Let us now describe the content of the individual sections of our paper. In Sec-
tion 2 we introduce the classical unital and the two conjectures about its incidence
matrix. In Section 3 we describe the essential part of the automorphism group of
the unital, the 3-dimensional projective unitary group PGU3(q) and some of its
subgroups needed later on. Theorem 4.1 of Section 4 contains the main represen-
tation theoretic result about PGU3(q) used in the proof of Andriamanalimanana’s
conjecture. Apart from two special cases, the proof of Theorem 4.1 can be cited
from the literature. A proof for the remaining cases is given in the appendix of our
paper. Using Geck’s link between the representation theory of PGU3(q) and the
rank of the incidence matrix, it is not hard to give a proof of Andriamanalimanana’s
conjecture in Section 5.
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2 HERMITIAN FUNCTION FIELDS AND UNITALS

Section 6 is devoted to the elementary part of the proof of Geck’s conjecture.
This is elementary in the sense that it uses only the axioms of a unital and the
action of the automorphism group. In fact, we give a proof of Geck’s conjecture
under a certain hypothesis (Hypothesis 6.4). It is not unreasonable to expect that
one can show by elementary means that this hypothesis is always satisfied for the
classical unital. However, we were not able to find such a proof.

Instead, in Section 7, we use some basic results about algebraic function fields
to establish the validity of Hypothesis 6.4. Specifically, we consider the Hermitian
function field K over Fq2 . This is the function field of the Fermat curve F :
xq+1 +yq+1 +zq+1 = 0. (For references on algebraic funtion fields and the concepts
and facts introduced and summarized below, we refer the reader to Section 7.) The
non-existence of certain functions of K with a particular pole implies the truth of
Hypothesis 6.4 (cf. Lemma 7.1(b)).

In the remainder of Section 7 we give an interpretation of the group A introduced
above in terms of the group D0

K of divisor classes of degree 0 of K. The prime
divisors of K of degree 1 agree with its Weierstraß points, and are in bijection with
the points of the classical unital U . Let M0 denote the group of divisors of K which
have degree 0 and whose support is contained in the set of Weierstraß points, i.e.,
the set of prime divisors of degree 1. Let H denote the group of principal divisors
of K. The factor group M0/H∩M0 can be thought of as the “divisor class group on
the Weierstraß points” of K. In [17], Rohrlich considered a similar structure for a
Fermat curve over the complex numbers. We show (Theorem 7.3) that M0/H∩M0

is in fact all of D0
K and that the latter is isomorphic to [Z/(q + 1)Z]q

2−q. We also
show (Corollay 7.4) that that D0

K is naturally isomorphic to a subgroup of A of
index q+1. Finally Corollary 7.5 gives a result on the multiplicative group of K: we
determine a generating set for the group of functions whose divisors have support
in the set of Weierstraß points. We remark that, conversely, this corollary implies
the conjectures of Geck and Andriamanalimanana, and thus also a proof of the
repersentation theoretic facts of Section 4.

Let us add some comments on the history of this paper. It started with the
investigations of Geck on the decompositon numbers of SU3(q). He found all but
one of these decomposition numbers, and showed that the missing one could be
determined from the rank of the classical unital and vice versa (see [7, Kapitel 3]
and [8, Section 5]). Geck’s reformulation of the problem was inspired by research
of Mortimer on the structure of permutation modules of 2-transitive permutation
groups [14].

The author learned about algebraic function fields, curves and divisor class
groups through lectures of Professor B. H. Matzat, seminar talks, and discussions
with his colleagues at the IWR at Heidelberg during the years 1989–1997. In this
time a preliminary draft of this paper was written, establishing the connection be-
tween the (at that time still unknown) decomposition numbers of SU3(q) and a
certain generating property for the Hermitian function field (now Corollary 7.5).
The hope was to prove the latter result directly from the theory of function fields
and deduce the desired decomposition number from this.

Since then the missing decomposition number has been determined by Okuyama
and Waki [15], and Corollary 7.5 follows from this. It is not unlikely that someone
finds an independent proof of this corollary, so that the original plan to obtain the
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decomposition number from a property of the Hermitian function field could work
out.

2. The classical unital

Let p be a rational prime number and let q be a power of p. Put k = Fq2 , the
finite field with q2 elements. Then α 7→ ᾱ := αq, α ∈ k, is the unique automorphism
of k of order 2. We define the Hermitian form f on k3×1 by

(1) f(

 α1

α2

α3

 ,

 β1

β2

β3

) := α1β̄3 + α2β̄2 + α3β̄1.

Points of P2(k), the projective plane over k, are written as α

β

γ

 , α, β, γ ∈ k, (α, β, γ) 6= (0, 0, 0).

A vector v ∈ k3×1 is called isotropic (with respect to f), if f(v, v) = 0. A point
of P2(k) is called isotropic, if it consists of isotropic vectors (when considered as
1-dimensional subspace of k3×1). It is easily checked that P2(k) contains exactly
the following q3 + 1 isotropic points:

p∞ =

 0
0
1

 , pα,β =

 1
α

β

 , α, β ∈ k, αᾱ+ β̄ + β = 0.

The reason for denoting the isotropic points by Gothic letters will become apparent
in Section 7.

Let U denote the incidence structure consisting of the isotropic points of P2(k)
and the lines of P2(k) containing at least two distinct isotropic points. Then U is a
unital, i.e. a 2-(q3 + 1, q+ 1, 1) design, which means that each line contains exactly
q + 1 points of U and that any two distinct points lie on exactly one line (see [3,
8.3]). It follows directly from the axioms of a unital, that each point lies on exactly
q2 lines and that the number of lines is q2(q2 − q + 1). In the following we shall
identify a line of U with the set of points of U incident to the line.

It is easy to find a set of q2−q+1 pairwise non-intersecting lines of U . For β ∈ k
such that β + β̄ 6= 0 let

nβ := {pα,β | α ∈ k, αᾱ+ β̄ + β = 0}.

Then nβ is a line of U , which in P2(k) passes through the non-isotropic point

 0
1
0

.

Therefore, the set of lines {nβ | β ∈ k, β+ β̄ 6= 0} together with the line joining p∞
with p0,0 is a set of q2 − q + 1 parallel lines.

Let I denote the incidence matrix of U , a q2(q2−q+1)×(q3+1)-matrix. For ` = 0
or a prime number, define rk`(I) to be the rank of I considered as a matrix over a
field of characteristic `. It is not difficult to show that rk`(I) = q3+1, unless ` | q+1
(see the proof of Corollary 5.1 below). Computations by Andriamanalimanana for
q = 2, 3, 4, 5 lead him to the following conjecture.
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Conjecture 2.1. (Andriamanalimanana [2]) If ` is a prime dividing q + 1, then
rk`(I) = q(q2 − q + 1).
These computations have been extended by Key for q up to 13, using Magma
(see [10, Section 4]).

There is a stronger conjecture dealing with the elementary divisors of I.
Conjecture 2.2. (Geck [8]) The elementary divisors of I are 1, with multiplicity
q(q2 − q + 1) and q + 1, with multiplicity q2 − q + 1.
Geck checked this conjecture with a computer for q = 2, 3, 4, 5. He also remarked
that the prime divisors of the elementary divisors of I are among the prime divisors
of q + 1, an observation which follows from the axioms of a unital.

3. The 3-dimensional unitary group

Let us keep the notation of the preceding section. In particular, k is the field
with q2 elements and f is the Hermitian form defined by (1).

We are going to use the representation theory of the 3-dimensional projective
unitary group over k, which constitutes an essential part of the automorphism group
of U , to prove Conjecture 2.1. To introduce this group, let us put

(2) w0 :=

 0 0 1
0 1 0
1 0 0

 ,

and set
GU3(q) := {(αij) ∈ GL3(q2) | (αji)w0(ᾱij) = w0},

the 3-dimensional general unitary group. Then GU3(q) is the group of isometries
of f . The order of GU3(q) is given by

|GU3(q)| = q3(q3 + 1)(q2 − 1)(q + 1).

The center Z of GU3(q) consists of the scalar matrices contained in GU3(q), and
thus has order q + 1. We put

G := PGU3(q) := GU3(q)/Z,

the 3-dimensional projective unitary group. The order of G equals

|G| = q3(q3 + 1)(q2 − 1),

the center of G is trivial, and the commutator subgroup G′ of G is the 3-dimensional
projective special unitary group. This is a nonabelian simple group, unless q = 2.
If 3 divides q + 1, then G/G′ is a cyclic group of order 3, otherwise G = G′.

We now consider various subgroups of GU3(q). Let U consist of all elements
of GU3(q) of the form

(3)

 1 0 0
α 1 0
β −ᾱ 1

 α, β ∈ k, αᾱ+ β̄ + β = 0.
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Then U is a Sylow p-subgroup of GU3(q) of order |U | = q3. Let T be the subgroup
of GU3(q) consisting of all elements of the form

(4)

 ζ−1 0 0
0 1 0
0 0 ζ̄

 ζ ∈ k×.

Then T is cyclic of order q2 − 1 and normalizes U . We put B := TU .
Finally let L denote the subgroup of elements of GU3(q) of the form α11 0 α13

0 1 0
α31 0 α33


such that (

α11 α31

α13 α33

)(
0 1
1 0

)(
ᾱ11 ᾱ13

ᾱ31 ᾱ33

)
=

(
0 1
1 0

)
.

Thus L is isomorphic to GU2(q), the 2-dimensional general unitary group over k
and we have

|L| = q(q2 − 1)(q + 1).
The subgroups U , T , B, and L of GU3(q) have trivial intersection with Z, the

center of GU3(q), and we therefore may and will identify them with subgroups of G.
Thus B is a Borel subgroup of G and T is a maximal torus contained in B. The
intersection B0 := B ∩L is a Borel subgroup of L. It has order q(q2− 1) and it is a
semidirect product of T with U0 := U ∩L. Moreover, U0 consists of the elements of
the form (3) with α = 0, it equals the center Z(U) of U and it is a Sylow p-subgroup
of L.

The symbols G, U , T , B, U0, B0 and L will have the above meaning for the
remainder of this paper.

Clearly, G acts (from the left) on U as a group of automorphisms, but in general it
is not the full automorphism group of U (which is PΓU3(q), the semidirect product
of G with its group of field automorphisms, see [16]). The stabilizer of the point
p∞ is the Borel subgroup B of G, and the unipotent subgroup U permutes the q3

points of U \ {p∞} regularly. Let n be the line in U joining p∞ and p0,0. Then the
stabilizer of n equals L. Since the index of L in G is equal to the number of lines
of U , it follows that L permutes these lines transitively.

4. The permutation module of G on the cosets of B

Let F be an algebraically closed field of characteristic `. If H is a subgroup of G
we write FH for the trivial FH-module and FH

G for the FG-permutation module
on the cosets of H.

The following result gives the structure of FBG, the permutation module on the
cosets of the Borel subgroup of G. Since G acts doubly transitively on the cosets
of B, this adds to an investigation begun by Mortimer [14].
Theorem 4.1. Up to isomorphism, FBG has at most three composition factors,
denoted by FG, ϕ, and ϑ. The composition factor called ϕ has degree q(q − 1). It
occurs if and only if ` divides q + 1. Moreover, FBG has the following structure.
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(b) (Mortimer [14] and Geck [7, 8]) If ` does not divide q3+1, then FBG = FG⊕ϑ,
and ϑ has degree q3. If ` divides q2 − q + 1, but not q + 1, then FB

G is uniserial
with socle series

FG

ϑ

FG

and ϑ has degree (q − 1)(q2 + q + 1).
(c) (Geck [7, 8] and Okuyama-Waki [15]) If ` is odd and ` | q+ 1 or if ` = 2 and

4 | q + 1, then FB
G is uniserial with socle series

FG

ϕ

ϑ

ϕ

FG

and ϑ has degree (q − 1)(q2 − q + 1).
(d) (Erdmann [5]) If ` = 2 and 4 | q − 1, then FB

G has socle series

FG

ϕ⊕ ϑ
FG

and ϑ has degree (q − 1)(q2 + 1).

For odd ` 6= 3, the structure of FBG is a consequence of the decomposition matrix of
GU3(q), recently completed by Okuyama and Waki [15], as well as the investigations
of Mortimer and Geck on this permutation module in [14], [7, Kapitel 3], and [8,
Section 5]. For ` = 3 an additional argument is needed, based on the results of
Koshitani and Kunugi [11]. This will be given in the appendix.

The case ` = 2 and 4 | q − 1 can be derived from Erdmann’s results in [5,
Section 4]. Brouwer et al. have given a different proof in [4, Sections 5, 6]. The
proof in case ` = 2 and 4 | q + 1 is a slight modification of the original Okuyama-
Waki argument. It will also be given in the appendix.

5. The proof of Andriamanalimanan’s conjecture

We keep the notation of the preceding sections. In particular, F is an alge-
braically closed field of characteristic `.

It was shown by Geck in [7, 8], that there is a close connection between the rank
rk`(I) of the incidence matrix I of U over the field F , and the structure of the
permutation module FBG, investigated in the previous section. For example, Geck
showed that if ` is odd and divides q + 1, the knowledge of the structure of FBG is
equivalent to the knowledge rk`(I). In particular, the degree of ϑ could be derived
from this rank (see the remarks following [8, Theorem 5.2]).

As a corollary to Theorem 4.1 we obtain a proof of Andriamanalimanana’s con-
jecture.
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Corollary 5.1. Recall that ` = 0 or a prime number. We have

rk`(I) =

{
q(q2 − q + 1), if ` | q + 1
q3 + 1, otherwise.

Proof. This proof follows the ideas outlined in [7, Kapitel 3] and [8, Section 5].
The permutation representation of G (over F ) on the cosets of B is equivalent to the
permutation representation on the points of U , and the permutation representation
of G on the cosets of L is equivalent to that on the lines of U .

The transpose of I (viewed as a matrix over F ) describes the natural FG-
homomorphism FL

G → FB
G sending a line of U to the sum of its points. Thus the

rank of I over F equals the dimension of the image V of this homomorphism.
By choosing the points of U as F -basis for FBG, we may identify FB

G with
F 1×(q3+1) and V with its subspace spanned by the rows of I. Obviously, the
dimension of V is larger than 1. Let Z denote the submodule of codimension 1 of
FB

G consisting of the vectors with coefficient sum zero.
If ` does not divide q + 1, then V is not contained in Z (since a line of U

contains exactly q + 1 points). Then V = FB
G, by the module structure given in

Theorem 4.1(b), and we are done in this case.
Suppose that ` divides q + 1. Then V ≤ Z. It follows from the considerations

of [8, Section 5], that V does not have a factor module isomorphic to ϕ. (Geck
has proved this only for odd ` but his argument also works for ` = 2. Indeed, even
for ` = 2, the restriction of ϕ to L has only compositon factors of degree q − 1.
By Frobenius reciprocity, FLG does not have any trivial factor module.) It follows
from Theorem 4.1 that V is the unique submodule of FBG which has ϑ as its unique
factor module. In this case the dimension of V equals q(q2 − q + 1).

It would be nice to find a purely combinatorial proof of Conjecture 2.1. Brouwer,
Wilbrink, and Haemers have given such a proof in case ` = 2 and 4 | q − 1 (see
[4, Sections 5, 6]). R. A. Liebler, in private communication, has announced such a
proof in the general case.

6. Towards a proof of Geck’s conjecture

In this section we prove Conjecture 2.2 under an additional hypothesis which
will later shown to be always satisfied.

Before doing so, we introduce some more notation. Let M denote the free abelian
group on the points of U . We view a line of U as an element of M by identifying
the line with the sum of its points in M . Let N be the subgroup of M generated by
the lines of U . (If we identify M with Z1×(q3+1), then N is the subgroup spanned
by the rows of I.) Conjecture 2.2 is equivalent to the statement

M/N ∼= [Z/(q + 1)Z]q
2−q+1

(where the latter denotes a direct sum of q2 − q + 1 copies of the cyclic group
Z/(q + 1)Z of order q + 1).

The next proposition is due to B. H. Matzat. It uses the action of G on U to
bound the exponent of M/N .
Proposition 6.1. The elementary divisors of I divide q + 1.

Proof. We have to show that (q + 1)p ∈ N for every point p of U .
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Since U contains a system of q2−q+1 parallel lines (see Section 2), the sum u of
all points of U is in N . Consider a line m not containing p∞. Since U acts regularly
on the set of points of U different from p∞, the U -orbit of each of the q + 1 points
of m consists of all points of U but p∞.

Thus
∑
u∈U um = (q + 1)(u − p∞). Since the left hand side of this equation is

in N , it follows that (q + 1)p∞ ∈ N . Since G is transitive on the points of U , we
are done.

Thus M/N is a finite group (by Corollary 5.1) of exponent dividing q + 1.
An element of M is of the form

(5)
∑

p

zp p,

where p runs through the points of U , and the coefficients zp are integers. Let us
call

∑
p zp the degree of the element (5).

Let M0 ≤ M be the subgroup of elements of degree 0, and put N0 := M0 ∩N .
Then (M0 +N)/N ∼= M0/N0. We have the following picture of subgroups.

t
t
t

t
t
t

�
�
�
�

@
@

@
@
@
@

@
@

@
@
@

@
@
@

@
@

�
�
�
�

{0}

N0

N

M0

M0 +N

M

Lemma 6.2. (a) M/(M0 +N) is cyclic of order q + 1.
(b) N0 is generated by {m− (q + 1)p∞ | m a line of U}.
Proof. (a) We have p = p∞ + (p − p∞) ∈ p∞ + (M0 + N) for all points of U .

Hence M/(M0 +N) is cyclic. By Proposition 6.1, the order of M/(M0 +N) divides
q + 1.

On the other hand, every element of N , and hence also every element of M0 +N
has degree divisible by q+ 1. Thus if sp∞ ∈M0 +N for some s, then s is divisible
by q + 1. It follows that M/(M0 +N) has order q + 1.

(b) Note that m− (q + 1)p∞ ∈ N0 for every line m of U by Proposition 6.1.
On the other hand, let

∑
m zm m, where m runs through the lines of U , be an

element of N0. Since the degree of this element is zero,
∑

m zm(q + 1) = 0, and
hence

∑
m zm m =

∑
m zm (m− (q + 1)p∞).
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Note that the group M and its subgroups introduced above are ZG-modules. We
are going to use this structure and some representation theory of G in the proof of
Geck’s conjecture.
Lemma 6.3. Let N1 ≤M0 be a G-invariant subgroup of finite index. Suppose that
for any two distinct points p and q of U , the element (p − q) + N1 ∈ M0/N1 has
order q + 1. Then |M0/N1| ≥ (q + 1)q

2−q.
If |M0/N1| = (q + 1)q

2−q, then M0/N1
∼= [Z/(q + 1)Z]q

2−q.
Proof. Since M0 is generated by the elements p− q, where p, and q are points

of U , it follows from our assumption that q + 1 annihilates M0/N1.
Let ` be a prime dividing q+1 to the exact power `a > 1. Write Z for the `-part

of M0/N1. Then Z is a ZG-module, annihilated by `a.
Fix an integer i with 1 ≤ i ≤ a and consider the F`G-module `i−1Z/`iZ. We

claim that for every non-trivial element u ∈ U there is an element of `i−1Z/`iZ
which is not fixed by u. Indeed let m denote the `′-part of q + 1 and put z :=
m(p − p∞) + N1 ∈ Z, where p is a point of U different from p∞. Suppose that u
fixes the image of `i−1z in `i−1Z/`iZ, i.e., `i−1z − `i−1uz ∈ `iZ. Writing q := up,
we find `i−1m(p − p∞) + N1 − `i−1mu(p − p∞) + N1 = `i−1m(p − q) + N1 ∈ `iZ.
Since `a−i annihilates `iZ by our assumption, this implies that `a−1m(p− q) ∈ N1.
But u is non-trivial, and so p 6= q. By what we have shown above, the order of
(p− q) +N1 in M0/N1 is smaller than q + 1, contradicting our hypothesis.

If q > 2, a non-trivial F`G-module has at least dimension q2 − q (this follows
from the known decomposition matrices for G, but can also be derived from the
old results of Landazuri and Seitz [12]). If q = 2, we have ` = 3 and the irreducible
F`G-modules have dimensions 1 and 2. But the F`G-modules of dimension 1 have
the centre of a Sylow 2-subgroup (a quaternion group of order 8) in their kernel.
As we have seen above, every non-trivial element of U has a non-fixed vector on
`i−1Z/`iZ. Thus in this case, too, the F`-dimension of `i−1Z/`iZ is at least q2− q.

By induction we find that |Z| ≥ `a(q2−q). Since ` was arbitrary this implies that
|M0/N1| ≥ (q + 1)q

2−q as claimed.
If |M0/N1| = (q + 1)q

2−q, then |`i−1Z/`iZ| = `q
2−q for all 1 ≤ i ≤ a. Hence

Z ∼= [Z/`aZ]q
2−q. Since this is true for all primes ` dividing q + 1, the second

assertion follows.

We emphasize that Conjecture 2.1 is not needed in the proof of the above lemma.
We wish to apply the lemma with N1 = N0. Since we shall only show in the next
section that the assumptions of the lemma are satisfied, we introduce the following
hypothesis.
Hypothesis 6.4. For any two distinct points p and q of U , the element (p−q)+N0 ∈
M0/N0 has order q + 1.

Lemma 6.3 together with the truth of Conjecture 2.1 now enable us to prove
Geck’s conjecture assuming Hypothesis 6.4.

Theorem 6.5. If Hypothesis 6.4 is satisfied, M/N ∼= [Z/(q + 1)Z]q
2−q+1.

Proof. Let d1, d2, . . . , dr denote those elementary divisors of the incidence ma-
trix I, which are larger than 1, and such that di divides di+1 for 1 ≤ i < r. Recall
that di | q + 1 for 1 ≤ i ≤ r by Proposition 6.1. Let ` be a prime divisor of d1.
By Corollary 5.1, the `-rank of I equals q(q2 − q + 1), and hence r = q2 − q + 1.
Therefore, M/N ∼= ⊕q

2−q+1
i=1 Z/diZ.
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On the other hand, |M/N | ≥ (q+1)q
2−q+1 by Lemmas 6.2(a) and 6.3. It follows

that all di must be equal to q + 1 and thus that M/N ∼= [Z/(q + 1)Z]q
2−q+1.

In the next section we show that Hypothesis 6.4 is satisfied and thus complete the
last step in the proof of Conjecture 2.2.

7. The Hermitian function field

Again we keep the notation of the preceding sections. In particular, k = Fq2 is
the finite field with q2 elements.

We consider the algebraic function field (for introductions to the theory of alge-
braic function fields we refer to the textbooks [18] and [19])

(6) K = k(u, v), uq+1 + vq + v = 0.

This means that u ∈ K is transcendental over k and that K is an algebraic extension
K = k(u)[v] of the rational function field k(u) by the element v with minimal
polynomial Xq +X + uq+1 ∈ k(u)[X] over k(u).

The field K is called the Hermitian function field over k. A detailed investigation
of K can be found in the book by Stichtenoth ([19, Example VI.4.3]; note that
our v is called y there, whereas our u equals ξx with ξ ∈ k such that ξq+1 = −1).
Stichtenoth also gives the transformation which shows that there are a, b ∈ K,
transcendental over k, such that K = k(a, b) with aa+1 + bq+1 + 1 = 0. This is the
affine version of the Fermat equation, so that K is the algebraic function field of
the Fermat curve F of the introduction. For this reason K is also called the Fermat
function field in the literature.

Let Aut(K/k) denote the automorphism group of K over k. Leopoldt has shown
in [13] that Aut(K/k) ∼= PGU3(q) = G, and that the resulting action of G on u
and v can be described as follows. An element of the form (3) yields the automor-
phism

(7) u 7→ u+ α, v 7→ −ᾱu+ v + β

and an element of the form (4) acts as

(8) u 7→ ζu, v 7→ ζζ̄v

Now G is generated by B and the image of w0 (see (2)) in G, which induces the
k-automorphism

u 7→ u

v
, v 7→ 1

v
on K. We thus have completely described the action of G on K.

Let D denote the group of divisors of the field extension K/k. By definition,
D is the free abelian group, written additively, on the set of places of K/k. A
place of K/k is the maximal ideal of a valuation ring of K/k. Places, viewed as
elements of D, are also called prime divisors in the following. We refer the reader
to [19, Chapter I] for the fundamental notions of places and divisors of an algebraic
function field.

The set of divisors of degree 0 is denoted by D0 (for the definition of the degree
of a divisor see [19, Definition I.4.1]). Let H denote the group of principal divisors
of K/k, the image of the homomorphism K× → D sending a function z to its divisor
(z) (the reason for calling the elements of K functions is motivated in [19, Remark
I.1.16]; the divisor of a function is defined in [19, Definition I.4.2]).
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We summarize some facts about K on this and the next page. A reference for
these results is [19, Lemma VI.4.4].

The genus of K equals q(q − 1)/2. Also, K has exactly q3 + 1 prime divisors
of degree 1. (This set coincides with the set of Weierstraß points of K (cf. [13,
Satz 3]).)

The prime divisors of degree 1 can be described as follows. There is a unique
place p∞ lying above the infinite place of the rational function field k(u). Moreover,
p∞ has degree 1, and the pole divisors of u and v are qp∞ and (q+1)p∞, respectively.
(For the notion of zero and pole divisor see [19, Definition I.4.2].) For every pair
(α, β) of elements of k with (α, β) 6= (0, 0) and αᾱ + β̄ + β = 0, there is a unique
place pα,β of degree 1 with u(pα,β) = α and v(pα,β) = β. (If p is a place of K/k,
the function z 7→ z(p) for z ∈ K is the residue class map; see [19, Definiton I.1.13].)
Thus the q3 + 1 prime divisors of K/k of degree 1 are in one-to-one correspondence
with the points of the unital U via the map

p∞ 7→

 0
0
1

 , p 7→

 1
u(p)
v(p)

 , p 6= p∞.

This map is compatible with the action of G on the points of U and on the set of
prime divisors of degree 1 of K/k. In the following we identify the latter set with
the set of points of U .

The zero divisor of u is clearly equal to∑
β+β̄=0

p0,β

(the places p0,β appearing in the above sum are zeroes of u, i.e., u(p0,β) = 0, they
all have degree 1, and their number is q, the degree of the pole divisor qp∞ of u),
whereas the zero divisor of v equals (q+1)p0,0, so that (v) = (q+1)p0,0−(q+1)p∞.

In accordance with our definition at the end of Section 3, we put

n := p∞ +
∑

β+β̄=0

p0,β .

Thus n corresponds to the line of U joining p∞ with p0,0, and (u) = n− (q+ 1)p∞.
The linear space L(mp∞) (for the definiton of this space see [19, Definition I.4.4])

has basis

(9) {uivj | 0 ≤ i, 0 ≤ j ≤ q − 1, qi+ (q + 1)j ≤ m}.
We now describe the set of principal divisors arising from the non-constant func-

tions in L((q + 1)p∞). By (9), the linear space L(qp∞) has dimension 2 over k,
{1, u} being a k-basis. The functions

u+ α, α ∈ k,
(which can also be described as the images of the function u under the subgroup U
of G, cf. (7)) give rise to the q2 divisors

(10) m− (q + 1)p∞,

where m is a line of U through p∞.
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Next, L((q + 1)p∞) is a 3-dimensional vector space over k with basis {1, u, v},
again by (9). Since U is transitive on U \ {p∞}, the q3 images of v under U , which
are of the form

−ᾱu+ v + β, α, β ∈ k, αᾱ+ β̄ + β = 0,

have the divisors
(q + 1)p− (q + 1)p∞, p 6= p∞.

We finally have q3(q − 1) divisors

(11) m− (q + 1)p∞,

where m is a line of U not passing through p∞. These arise as follows. If m is any
line, then m is conjugate to n by some element of G. If we apply this element to u,
we obtain a function z with divisor m− (q + 1)p, with some p ∈ U . Now a suitable
conjugate v′ of v has divisor (q + 1)p − (q + 1)p∞ and so (z/v′) = m− (q + 1)p∞.
By (9), the following functions give rise to the divisors described in (11):

αu+ v + β, α, β ∈ k, αᾱ+ β̄ + β 6= 0.

We now have accounted for all divisors arising from the functions in L((q+ 1)p∞).
Let

M := 〈p∞, pα,β | αᾱ+ β̄ + β = 0, α, β ∈ k〉 ≤ D.
Thus M is the set of divisors of K whose support is contained in the set of prime
divisors of degree 1 of K/k. Furthermore, let

N := 〈m | m is conjugate in G to n〉.
Then M/N is isomorphic to the group with the same name introduced in Section 6.
In particular, M/N is a finite group whose exponent divides q + 1 by the remark
following Proposition 6.1.

Put M0 := M ∩ D0 and put N0 := N ∩ D0. We have

N ∩M0 = N ∩ D0 ∩M = N0 ∩M = N0,

from which we conclude that M0 and N0 have the same meaning as in Section 6.
Lemma 7.1. (a) N0 ≤ H ∩M .

(b) For any two distinct prime divisors p and q of degree 1, the element (p−q)+
(H∩M) ∈M0/(H∩M) has order q + 1. In particular, Hypothesis 6.4 is satisfied.

Proof. (a) By Lemma 6.2(b), the elements m−(q+1)p∞, where m runs through
the lines of U , generate N0. By (10) and (11) these generating elements are divisors
of functions, proving our claim.

(b) Since G acts doubly transitively on the set of prime divisors of degree 1 and
since M0 and H∩M are ZG-modules, it suffices to assume that q = p∞. Let m be
the order of (p−p∞)+(H∩M) ∈M0/(H∩M). Since (q+1)(p−p∞) ∈ N0 ≤ H∩M
by Proposition 6.1 and Part(a), it follows that m divides q + 1.

Now mp − mp∞ ∈ H ∩M ≤ H, and thus there is a non-constant function in
L(mp∞). Suppose that m < q+1. Then m < q. In this case L(mp∞) contains only
constant functions by (9). This contradiction proves our first claim. The second
one follows from the first together with Part (a) and Proposition 6.1.

We can now prove Geck’s conjecture.
Corollary 7.2. Geck’s conjecture 2.2 has a positive answer.



GERHARD HISS 13

Proof. This follows from Theorem 6.5 together with Lemma 7.1(b).

Let D0
K := D0/H denote the group of divisor classes of degree 0 of K. The next

theorem describes the structure of D0
K .

Theorem 7.3. The canonical map M0 → D0
K is surjective and D0

K is isomorphic
to [Z/(q + 1)Z]q

2−q.
Proof. The kernel of the map equals H ∩M0 = H ∩M . By Lemmas 7.1(b)

and 6.3 we have |M0/(H ∩M)| ≥ (q + 1)q
2−q.

The order of D0
K is finite (see [18, Lemma 5.6]) and equals LK(1) (see [18,

Theorem 5.9]), where LK denotes the L-polynomial of K. By [19, Example VI.3.5],
we have LK(t) = (1 + qt)q

2−q, and thus |D0
K | = (q + 1)q

2−q. It follows that the
above map is surjective and that D0

K
∼= M0/(H ∩M). The isomorphism type of

M0/(H ∩M) can be derived from the second assertion of Lemma 6.3.

As a corollary of the above results we obtain an interpretation of M0/N0 as D0
K .

Corollary 7.4. We have N0 = H ∩M . In particular, M0/N0
∼= D0

K .
Proof. By Lemma 7.1(a) we have N0 ≤ H ∩M . By Corollary 7.2 and Theo-

rem 7.3, we have |M0/N0| = |M0/(H ∩M)| implying our claim.

Corollary 7.5. H ∩M is generated by the divisors gn − (q + 1)p∞, g ∈ G, in
other words by the divisors of (10) and (11). In particular, every non-zero function
in K which has zeroes and poles only in the k-rational places (i.e., the Weierstraß
points) of K, is a product of the functions

αu+ βv + γ, α, β, γ ∈ k, (α, β, γ) 6= (0, 0, 0)

and their inverses.
Proof. We have N0 = H ∩M by Corollary 7.4. The functions u + α, α ∈ k,

and αu+ v+ β, α, β ∈ k give rise to the divisors of (10) and (11) generating N0 by
Lemma 6.2(b).

Note that Corollary 7.5 and Lemma 6.2(b) imply N0 = H ∩ M . This in turn
implies M0/N0

∼= [Z/(q + 1)Z]q
2−q by Theorem 7.3. The latter, together with

Lemma 6.2(a) (or rafter its proof) implies the truth of Geck’s and hence also of
Andriamanalimanana’s conjecture. From this one can derive the structure of the
permutation module for ` dividing q + 1. Finally, this information yields the de-
composition numbers of G in this case.

Hence if one could prove Corollary 7.5 without using the representation theory
of G, one could complete the `-decomposition matrix of G.

Appendix

In this appendix we sketch a proof of Theorem 4.1 in case F has characteristic 2.
Moreover, Geck’s argument of [7] showing that FBG is uniserial does not apply if F
has characteristic 3 and the 3-part of q + 1 is exactly 3. In this case we replace
Geck’s argument by a reference to [11]. The details are given at the end of this
appendix. For the convenience of the reader we also give the ordinary character
tables of B = UT and B0 = Z(U)T .
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The character tables of B and B0. The following table introduces names and
representatives for the conjugacy classes of these groups and gives the corresponding
centralizer orders.

Class Representative Centralizer order in
Parameters B Z(U)T

B1

 1 0 0
0 1 0
0 0 1

 q3(q2 − 1) q(q2 − 1)

B2

 1 0 0
0 1 0
β 0 1

 q3(q + 1) q(q + 1)

B3

 1 0 0
1 1 0
γ −1 1

 q2 —

B
(k)
4

1 ≤ k ≤ q

 ρ−k 0 0
0 1 0
0 0 ρ̄k

 q(q2 − 1) q(q2 − 1)

B
(k)
5

1 ≤ k ≤ q

 ρ−k 0 0
0 1 0
β 0 ρ̄k

 q(q + 1) q(q + 1)

B
(k)
6

0 ≤ k ≤ q2 − 1
k - q − 1

 ζ−k 0 0
0 1 0
0 0 ζ̄k

 q2 − 1 q2 − 1

The conjugacy classes for B and B0 are parametrized in the same way except that
B0 does not contain elements of the class B3. Here, β and γ are elements of k = Fq2

with β + β̄ = 0 and γ + γ̄ + 1 = 0, respectively. Moreover, ζ is a primitive element
of k× and ρ := ζq−1.

We now give the character table of B0.

B1 B2 B
(k)
4 B

(k)
5 B

(k)
6

τ
(i)
1

0 ≤ i ≤ q2 − 2
1 1 εik εik δik

τ
(i)
q−1

0 ≤ i ≤ q
q − 1 −1 (q − 1)εik −εik 0
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Finally, we give the character table of B (see also [8, Table 2.1]).

B1 B2 B3 B
(k)
4 B

(k)
5 B

(k)
6

ϑ
(i)
1

0 ≤ i ≤ q2 − 2
1 1 1 εik εik δik

ϑ
(i)
q(q−1)

0 ≤ i ≤ q
q(q − 1) −q 0 (1− q)εik εik 0

ϑq2−1 q2 − 1 q2 − 1 −1 0 0 0

In these tables, δ denotes a complex primitive (q2−1)st root of unity, and ε := δq−1.

Proof of Theorem 4.1 for characteristic 2. Suppose then that q is odd and
let F denote an algebraically closed field of characteristic 2. Let T0 denote the
unique subgroup of T of order q + 1 and let D and D0 be the Sylow 2-subgroup
of T and T0 respectively. Let |D0| = 2a and |D| = 2b.

The group B has q2 − 1 linear complex characters ϑ(i)
1 , an irreducible character

ϑq2−1 of degree q2 − 1, and q + 1 irreducible complex characters ϑ(i)
q(q−1) of degree

q(q−1) (see the character table given above). The characters of a fixed degree form
a union of 2-blocks. The characters of degree q(q − 1) lie in 2-blocks with defect
group D0. Every 2-block contains a unique irreducible FB-module.

Let Y1 be the irreducible FB-module of the block containing ϑ
(0)
q(q−1). More

generally, for 1 ≤ i ≤ 2a, let Yi denote the uniserial FB-module with i copies of Y1

as composition factors. The following proposition is the analogue of [15, Propostion
1.2].

Proposition. The following statements hold.
(a)

(
FB

G
)
B
∼= FB ⊕ FTB.

(b) FTB = FB ⊕ Y2a−1 ⊕ Y ′′, where Y ′′ does not have any composition factor
isomorphic to Y1 or FB.

(c) dimFHomFT (FT , Yi) = i for 1 ≤ i ≤ 2a − 1.
Proof. Part (a) is just Mackey’s theorem and the fact that G = B ∪Bw0B.
To prove (b), observe that CB(D0) = NB(D0) = B0. We first consider FTB0 .

Since T0 acts trivially on this module, it follows that FTB0 ∼= FB0 ⊕ S with an
irreducible FB0-module S of degree q − 1. The character of FB0

B is the sum of
the trivial character of B with the character of degree q2 − 1. The module S has
vertex D0 and trivial source. Observe that D0 is a trivial intersection subgroup
of B and hence, by Green correspondence, SB has a unique indecomposable direct
summand Y with a trivial source and vertex D0, and the other direct summands are
projective. Trivial source modules are uniquely determined by the ordinary charac-
ters of their lifts. The character of the lift of S equals τ (0)

q−1 which gives
∑q
i=1 ϑ

(i)
q(q−1)

when induced to B. This implies in particular that the Green correspondent Y of S
lies in the block containing Y1.

We aim to show that Y = Ω(Y1) = Y2a−1. Since Green correspondence commutes
with the Heller operator (see [1, Proposition 20.7, p. 148]), it suffices to show that
the Green correspondent of Y1 in B0 is equal to ΩS. By the theory of blocks with
cyclic defect groups, the Green correspondent of Y1 is uniserial of length 1 or 2a−1
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(see [6, Theorem VII.2.7]). Hence the Green correspondent of Y1 equals S or Ω(S).
But the character value of ϑ(0)

q(q−1) on a generator of D0 equals 1− q < 0, and so Y1

does not have a trivial source. It follows that Y = Ω(Y1) = Y2a−1. This proves (b).
To prove (c), observe that there is an F [UT0]-module Z1 of degree q such that

Z1
B = Y1. The blocks of UT0 and UT = B containing Z1 and Y1, respectively,

are Morita equivalent (by Clifford theory). For 1 ≤ i ≤ 2a, we let Zi denote the
uniserial F [UT0]-module with i composition factors Z1. We also let Xi denote
the uniserial FT0-module with i trivial composition factors, also viewed as as an
F [UT0]-module via inflation. Then Zi ∼= Z1 ⊗F Xi and (Zi)B ∼= Yi.

By Mackey’s theorem we have (Yi)T ∼=
(
(Zi)B

)
T
∼= ((Zi)T0)T . Moreover,

(Zi)T0
∼= (Z1)T0 ⊗F Xi. Now Z1 is an indecomposable UT0 module with ver-

tex D0 and co-trivial source (i.e., Ω(Z1) has trivial source). Green correspondence
(between UT0 and Z(U)T0) implies that (Z1)Z(U)T0

has a unique non-trivial direct
summand with vertex D0 and co-trivial source. The other direct summands are
projective and do not lie in the principal block. It follows that (Z1)T0

= Ω(FT0)⊕W ,
where W is a projective FT0-module without trivial composition factors.

Using the self-duality of Xi, we find

dimFHomFT (FT , Yi) = dimFHomFT (FT , ((Z1)T0 ⊗F Xi)
T )

= dimFHomFT0(FT0 , (Z1)T0 ⊗F Xi)
= dimFHomFT0(Xi, (Z1)T0)
= dimFHomFT0(Xi, X2a−1) + dimFHomFT0(Xi,W )
= dimFHomFT0(Xi, X2a−1) = i.

This concludes the proof of Part (c) and hence of the proposition.

To finish the proof we need some information on the possible modular constituents
of FBG. Writing 1G for the Brauer character of the trivial FG-representation, the
Brauer character of FBG equals 1G + αϕ + ϑ, with α ≥ 1, and α ≥ 2 if 4 | q + 1.
This is proved exactly as for odd characteristics (see [8, Theorem 4.2(a)]). Namely,
the three ordinary unipotent characters χ1 (the trivial character), χq(q−1) (the lift
of ϕ), and χq3 (the Steinberg character), form a basic set of ordinary characters
for the principal 2-block of G (see [9, Theorem 5.1]). Thus it suffices to determine
the decomposition numbers for these three characters. It is easy to see that an
approximation to the decomposition matrix is given by

χ1 1 0 0
χq(q−1) 0 1 0

χq3 1 α 1

for some non-negative integer α. Furthermore, the principal 2-block contains an
ordinary irreducible character of degree q(q2−q+1) which has the same restriction
as χq3−χq(q−1) to the 2-regular elements of G. Thus α ≥ 1. If 4 | q+1, the principal
2-block contains an ordinary irreducible character of degree (q−1)(q2−q+1) which
restricts in the same way χq3 − 2χq(q−1) + χ1 to the 2-regular elements. Thus in
this case we even have α ≥ 2.

We can now give an alternative proof for the decomposition numbers in case
4 | q − 1 as follows. Here, a = 1 and ϑ

(0)
q(q−1) + ϑ

((q2−1)/2)
q(q−1) is a projective character

of B. By Part (b) of the above proposition, the restriction of χq3 to B contains only
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one constituent of the 2-block containing ϑ(0)
q(q−1). Since χq(q−1) restricts to ϑ(0)

q(q−1),

this implies that inducing ϑ
(0)
q(q−1) + ϑ

((q2−1)/2)
q(q−1) to G yields a projective character

containing each of χq(q−1) and χq3 exactly once. Thus α = 1 in this case.
Suppose then that 4 | q + 1. Since FB

G is a trivial source module with a
two-dimensional endomorphism ring, it is indecomposable with a unique maximal
submodule. The module V considered in the proof of Corollary 5.1 does not have
ϕ as a top composition factor, and thus VB ∼= Yi ⊕ Y ′′ for some 0 ≤ i ≤ 2a − 1.
From [15, Proposition 1.4] we obtain i ≥ 2a− 2, just as in the proof of [15, Lemma
2.2]. Since 2a − 2 ≥ 2, this also implies that V is uniserial.

Completion of the proof of Theorem 4.1 for characteristic 3. We finally
sketch a proof of Theorem 4.1 in case that the characteristic of F equals 3, and
that the 3-part of q + 1 is exactly 3. In this case the restriction of ϑ to B does
not contain any composition factor of the block containing ϑ(0)

q(q−1), and we cannot

conclude, as Geck did in [7], that FBG is uniserial. We can, however, use a result of
Koshitani and Kunugi [11] in this case. Let Ḡ := PSU3(q), considered as a normal
subgroup of G of index 3. Then

(
FB

G
)
Ḡ
∼= FB̄

Ḡ, where B̄ := Ḡ∩B. By [11, Lemma
(4.3)], the latter module is the projective cover of the trivial FḠ-module. By the
main theorem of the cited paper, the principal FḠ-block is Morita equivalent to
the principal block of F [PSU3(2)]. The socle series of the projective cover of the
trivial module of the latter group is of length 5 (see [11, Lemma (4.2)(ii)]). Since
FB

G has exactly 5 composition factors, it must be uniserial.
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