A NOTE ON THE CONSTRUCTION OF RIGHT CONJUGACY CLOSED LOOPS

GERHARD HISS AND LUCIA ORTJOHANN

ABSTRACT. We describe a group theoretical construction of nonassociative right conjugacy closed loops with abelian inner mapping groups.

1. INTRODUCTION

A *loop* is a quasigroup with an identity element. If the multiplication of the loop is associative, it is a group. In the following, every loop, and in particular every group, will be assumed to be finite.

Let $(\mathcal{L}, *)$ be a loop with identity element $1_{\mathcal{L}}$. For every $x \in \mathcal{L}$, we denote by R_x the right multiplication by x in \mathcal{L} , i.e. $R_x : \mathcal{L} \to \mathcal{L}, y \mapsto y * x$, and we set $R_{\mathcal{L}} := \{R_x \mid x \in \mathcal{L}\}$. Then $\operatorname{RM}(\mathcal{L}) := \langle R_{\mathcal{L}} \rangle \leq \operatorname{Sym}(\mathcal{L})$ and its subgroup $\operatorname{Stab}_{\operatorname{RM}(\mathcal{L})}(1_{\mathcal{L}})$ are called the right multiplication group, and the inner mapping group of \mathcal{L} , respectively. The envelope of \mathcal{L} consists of the triple $(\operatorname{RM}(\mathcal{L}), \operatorname{Stab}_{\operatorname{RM}(\mathcal{L})}(1_{\mathcal{L}}), R_{\mathcal{L}})$. To simplify notation, let us put $G := \operatorname{RM}(\mathcal{L}), H := \operatorname{Stab}_{\operatorname{RM}(\mathcal{L})}(1_{\mathcal{L}})$ and $T := R_{\mathcal{L}}$. Clearly, G acts faithfully and transitively on \mathcal{L} , which may hence be identified with the set of right cosets of H in G. Notice that \mathcal{L} is a group if and only if $|G| = |\mathcal{L}|$, or, equivalently, $H = \{1\}$. By definition, T generates G, and one can check that T is a transversal for the set of right cosets of H^g in G for every $g \in G$. Envelopes of loops are generalized to loop folders.

The connection between loops and loop folders, summarized below, goes back to Baer [3], and is described in detail by Aschbacher in [2, Section 1]. In the following, G denotes a finite group and H a subgroup of G; we write $H \setminus G$ for the set of right cosets of H in G. The triple (G, H, T) is called a *loop folder* if $T \subseteq G$ is a transversal for $H^g \setminus G$ for every $g \in G$, and if $1 \in T$. We call (G, H, T) faithful if G acts faithfully on $H \setminus G$, i.e. if $\operatorname{core}_G(H) = \{1\}$.

Date: May 5, 2020.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 20N05 Secondary: 20D99, 20K01.

Key words and phrases. Finite loops, conjugacy closed, invariant transversals.

By construction, the envelope (G, H, T) of a loop \mathcal{L} is a faithful loop folder with $G = \langle T \rangle$, and there is a natural bijection between T and \mathcal{L} . Conversely, given a loop folder (G, H, T), one can construct a loop (T, *) on the set T in such a way that (G, H, T) is isomorphic to the envelope of (T, *), provided (G, H, T) is faithful and $G = \langle T \rangle$. This motivates the following definition. A transversal T for $H \setminus G$ is called a generating transversal if $G = \langle T \rangle$.

A loop \mathcal{L} is called *right conjugacy closed* or an RCC-*loop* if the set $R_{\mathcal{L}}$ is closed under conjugation, i.e. if $R_x^{-1}R_yR_x \in R_{\mathcal{L}}$ for all $x, y \in \mathcal{L}$. Analogously, a loop folder (G, H, T) is called *right conjugacy closed*, or an RCC-*loop folder* if T is G-invariant under conjugation, i.e. $g^{-1}tg \in T$ for all $g \in G, t \in T$. Clearly, a loop is right conjugacy closed if and only if its envelope is an RCC-loop folder.

In this paper we construct envelopes of RCC-loops with abelian inner mapping groups. The following trivial observations form the starting point of our construction.

Proposition 1.1. Let G be a finite group, $Q \leq G$ and $H \leq G$ with $H \cap Q = \{1\}$. Let $\hat{T} = \{t_1, \ldots, t_n\}$ be a transversal for HQ in G. Then $T := \hat{T}Q$ is a transversal for H in G and $\{t_1Q, \ldots, t_nQ\}$ is a transversal for HQ/Q in G/Q. Furthermore, we have the following two statements.

- (a) The transversal $\{t_1Q, \ldots, t_nQ\}$ is G/Q-invariant if and only if T is G-invariant.
- (b) The transversal $\{t_1Q, \ldots, t_nQ\}$ generates G/Q if and only if T generates G.

Thus if $\operatorname{core}_H(G) = \{1\}$ and the transversal $\{t_1Q, \ldots, t_nQ\}$ is G/Q-invariant and generates G/Q, then (G, H, T) is an envelope of an RCC-loop, which is non-associative if $\{1\} \leq H \leq G$.

Notice that $\operatorname{core}_H(G) \leq C_H(Q)$ under our assumption $H \cap Q = \{1\}$, so that $C_H(Q) = \{1\}$ implies $\operatorname{core}_H(G) = \{1\}$. If G/Q is abelian, then H is abelian and T is G-invariant by part (a) of Proposition 1.1. This holds in particular for Q equal to the commutator subgroup [G, G] of G. We conjecture that the converse of this statement holds.

Conjecture 1.2. Let G be a finite group, $H \leq G$ an abelian subgroup such that there exists a G-invariant transversal T for $H \setminus G$ with $1 \in T$, i.e. (G, H, T) is an RCC-loop folder. Then $[G, G] \cap H = \{1\}$. \Box

In Section 3 we prove this conjecture in special cases.

2. Construction of generating transversals for Abelian groups

In this section we investigate the existence of generating transversals in abelian groups. Let p be a prime. We first show that if G is an abelian p-group, and the index of H in G is larger than the minimal size of a generating set of G, there exists a generating transversal for $H \setminus G$ containing 1. We generalize this result for an arbitrary abelian group G, however with a stronger condition on the index of H in G.

The minimal size of a generating set of G is called the *rank* of G, i.e.

$$\operatorname{rk}(G) := \min\{|S| \mid S \subseteq G, G = \langle S \rangle\}.$$

A cyclic group of order n is denoted by C_n . If T is a generating transversal for $H \setminus G$ containing 1, then necessarily, $|G : H| > \operatorname{rk}(G)$. For the sake of clarity in the proofs to follow, we write the elements of a direct product $A \times B$ of groups as pairs (a, b) with $a \in A, b \in B$.

Proposition 2.1. Let G be an abelian p-group. Suppose that $H \leq G$ is a subgroup of G such that $|G : H| > \operatorname{rk}(G)$. Then there exists a generating transversal T for $H \setminus G$ with $1 \in T$.

Proof. We proceed by induction on the order of G, where the base case is trivial. For the induction step, we assume that $G \neq \{1\}$, that the statement holds for every abelian *p*-group of order less than |G|, and distinguish two cases.

Case 1: For every decomposition

(1)
$$G = C_{m_1} \times C_{m_2} \times \cdots \times C_{m_r},$$

with $\{1\} \neq C_{m_i} \leq G$ for $1 \leq i \leq r$, we have $C_{m_i} \not\leq H$ for all $1 \leq i \leq r$.

Consider an arbitrary decomposition of G as in (1), and let a_i be a generator of C_{m_i} for every $1 \leq i \leq r$. Then $G = \langle a_1, \ldots, a_r \rangle$ and our assumption implies that $a_i \notin H$ for all $1 \leq i \leq r$. Suppose that for any $1 \leq i \neq j \leq r$, the generators a_i and a_j of G lie in distinct cosets of H in G. Then there is a transversal for $H \setminus G$ containing $\{1, a_1, \ldots, a_r\}$ and we are done. Otherwise, $Ha_i = Ha_j$ for some $1 \leq i \neq j \leq r$. Without loss of generality, we may assume that $|a_i| \geq |a_i|$. Then

$$G = \langle a_1 \rangle \times \cdots \times \langle a_{j-1} \rangle \times \langle a_j a_i^{-1} \rangle \times \langle a_{j+1} \rangle \times \cdots \times \langle a_r \rangle,$$

and we have $\langle a_j a_i^{-1} \rangle \leq H$. We have thus reduced the assertion to the following situation.

Case 2: There exist $\{1\} \neq C_{m_i} \leq G$ for $1 \leq i \leq r$ such that

$$G = C_{m_1} \times C_{m_2} \times \cdots \times C_{m_r},$$

and $C_{m_i} \leq H$ for some $1 \leq j \leq r$.

Note that the generators of these cyclic groups form a minimal generating set of G of size r. Thus, it follows from Burnside's basis theorem [5, III, Satz 3.15] that r = rk(G).

Set $U := C_{m_j}$,

$$\widetilde{G} := C_{m_1} \times \cdots \times C_{m_{j-1}} \times C_{m_{j+1}} \times \cdots \times C_{m_r},$$

and $\widetilde{H} := \widetilde{G} \cap H$. Clearly, \widetilde{H} is a complement to U in H and thus, without loss of generality, we may assume that

$$G = \widetilde{G} \times U$$
 and $H = \widetilde{H} \times U$.

By construction,

$$\operatorname{rk}(\widetilde{G}) = r - 1 < r = \operatorname{rk}(G).$$

Since $|\widetilde{G}| < |G|$ and

(2)
$$\left|\widetilde{G}:\widetilde{H}\right| = |G:H| > \operatorname{rk}(G) > \operatorname{rk}(\widetilde{G}),$$

we can apply the induction hypothesis to \widetilde{G} and hence there exists a generating transversal \widetilde{T} for $\widetilde{H} \setminus \widetilde{G}$ with $1 \in \widetilde{T}$. Moreover, from Equation (2) we obtain

(3)
$$\left|\widetilde{T} - \{1\}\right| = \left|\widetilde{G} : \widetilde{H}\right| - 1 > \operatorname{rk}(\widetilde{G}).$$

Suppose that $\widetilde{T} - \{1\}$ is a minimal generating set for \widetilde{G} . Then Burnside's basis theorem [5, III, Satz 3.15] implies that $|\widetilde{T} - \{1\}| = \operatorname{rk}(\widetilde{G})$, contradicting Equation (3). Thus there exists $1 \neq t \in \widetilde{T}$ such that $t = t_1 \cdots t_k$ for certain $t_1, \ldots, t_k \in \langle \widetilde{T} \setminus \{1, t\} \rangle$.

Now $T \times \{1\}$ is a transversal for $H \setminus G$ and we set

$$T := (T \times \{1\} \setminus \{(t,1)\}) \cup \{(t,u)\},\$$

where u is a generator of U. Clearly, $(1,1) \in T$, and T is a transversal for $H \setminus G$ since (t,1) and (t,u) lie in the same coset of H in G. It remains to show that T generates G. Recall that $t = t_1 \cdots t_k$ with $t_1, \ldots, t_k \in$ $\langle \widetilde{T} \setminus \{1,t\} \rangle$. As $(t_1,1), \ldots, (t_k,1) \in \langle T \rangle$, we also have $(t^{-1},1) \in \langle T \rangle$. Hence $(1,u) = (t^{-1},1)(t,u) \in \langle T \rangle$ and then $(t,1) = (t,u)(1,u^{-1}) \in \langle T \rangle$. We conclude that $\langle T \rangle \geq \langle \widetilde{T} \rangle \times \langle u \rangle = \widetilde{G} \times U = G$ and we are done. \Box

Let G be an abelian group and let p_1, \ldots, p_n be the distinct prime divisors of G. Assume that $G = G_1 \times \cdots \times G_n$ with $G_i := O_{p_i}(G)$ for all $1 \le i \le n$. Then an easy induction on n shows that

(4)
$$\operatorname{rk}(G) = \max\{\operatorname{rk}(G_i) \mid 1 \le i \le n\}$$

We now transfer the result of Proposition 2.1 to an arbitrary abelian group.

Theorem 2.2. Let G be an abelian group, let p_1, \ldots, p_n be the distinct prime divisors of G and let $H \leq G$. Then

 $G = G_1 \times \cdots \times G_n$ and $H = H_1 \times \cdots \times H_n$,

with $G_i := O_{p_i}(G)$ and $H_i := O_{p_i}(H)$. If

$$\max\{|G_i: H_i| \mid 1 \le i \le n\} > \operatorname{rk}(G)$$

then there exists a generating transversal for $H \setminus G$ containing 1.

Proof. Without loss of generality, we assume that

 $|G_1: H_1| = \max\{|G_i: H_i| \mid 1 \le i \le n\}$

and we set $\widetilde{G} := G_2 \times \cdots \times G_n$ and $\widetilde{H} := H_2 \times \cdots \times H_n$. Then $G = G_1 \times \widetilde{G}$ and $H = H_1 \times \widetilde{H}$. Equation (4) yields

$$m := |G_1 : H_1| = \max\{|G_i : H_i| \mid 1 \le i \le n\} > \operatorname{rk}(G)$$

= max{ rk(G_i) | 1 \le i \le n} ≥ rk(G_1).

Since G_1 is an abelian p_1 -group with $|G_1 : H_1| > \operatorname{rk}(G_1)$, it follows from Proposition 2.1 that there exists a transversal $T_1 = \{t_1, \ldots, t_m\}$ for $H_1 \setminus G_1$ with $t_1 = 1$ and $G_1 = \langle T_1 \rangle$. We are done if n = 1. Assume from now on that n > 1.

Put $K := H_1 \times G$. Then $H \leq K \leq G$ and $|G : K| = |G_1 : H_1| = m$. We next construct a generating transversal for $K \setminus G$ containing 1. Our hypothesis and Equation (4) imply that

$$k := \operatorname{rk}(\widetilde{G}) = \max\{\operatorname{rk}(G_i) \mid 2 \le i \le n\} \le \operatorname{rk}(G) < \max\{|G_i : H_i| \mid 1 \le i \le n\} = |G_1 : H_1| = m.$$

Let S be a generating set of \widetilde{G} with |S| = k. Then S is a minimal generating set and thus $1 \notin S$. Write $S \cup \{1\} := \{s_1, \ldots, s_{k+1}\}$ with $s_1 = 1$. Now $|S \cup \{1\}| = k + 1 \leq m$, and we set

$$R := \bigcup_{i=1}^{k+1} (t_i, s_i) \cup \bigcup_{j=k+2}^m (t_j, s_1).$$

As $t_1 = 1$ and $s_1 = 1$, we have $(1, 1) \in R$ and |R| = m = |G : K|. We proceed to show that R is a generating transversal for $K \setminus G$. Suppose that $(t_i, s_j), (t_k, s_l) \in R$ such that $(t_i, s_j)(t_k, t_l)^{-1} \in H_1 \times \widetilde{G}$. Then $t_i t_k^{-1} \in H_1$ and as T_1 is a transversal for $H_1 \setminus G_1$, it follows that i = k. This implies that j = l. We conclude that R is a transversal for $K \setminus G$. The fact $\gcd(|G_1|, |\widetilde{G}|) = 1$ yields that for every $(t, s) \in R$ there exist $a, b \in \mathbb{Z}$ such that $(t, s)^a = (1, s)$ and $(t, s)^b = (t, 1)$. Hence

$$\langle R \rangle \ge \langle T_1 \rangle \times \langle S \rangle = G_1 \times \widetilde{G} = G$$

and thus, R is a generating transversal for $K \setminus G$ with $1 \in R$.

Let V be a transversal for $H \setminus K$ with $1 \in V$. Then T := VR is a transversal for $H \setminus G$. Since $1 \in V$, we have $R \subseteq T$ and it follows that $\langle T \rangle \geq \langle R \rangle = G$. This implies that T is a generating transversal for $H \setminus G$ with $1 \in T$.

With this result and Proposition 1.1 we can construct envelopes of RCC-loops.

Corollary 2.3. Let G be a group and let H be a subgroup of G. Let Q be a normal subgroup of G such that G/Q is abelian, $H \cap Q = \{1\}$, $C_H(Q) = \{1\}$ and

 $\max\{|O_p(G/Q): O_p(HQ/Q)| \mid p \text{ prime divisor of } G/Q\} > \operatorname{rk}(G/Q).$

Then there exists a G-invariant generating transversal T for $H \setminus G$ with $1 \in T$, and G acts faithfully on $H \setminus G$; thus (G, H, T) is an envelope of a non-associative RCC-loop.

Recall that T in Corollary 2.3 arises from combining a generating transversal for $HQ\backslash G$ with Q; see Proposition 1.1. If G is a Frobenius group with kernel Q (in which case Q = [G, G], the commutator subgroup of G), every G-invariant transversal for $H\backslash G$ has this form (see [7, Theorem 3.6]). In general, there may be G-invariant transversals, which are not obtained in this way. Since [G, G] is the smallest normal subgroup of G with abelian quotient, we can replace Q by [G, G].

Finally, notice that the construction of RCC-loops arising from Proposition 1.1 is, of course, not restricted to the case G/Q abelian.

3. A Conjecture for RCC-loop folders

In this final section we discuss Conjecture 1.2. Using GAP [4], this conjecture has been verified for all non-abelian groups of order smaller than 40 by the second author in her master thesis [7], and for the multiplication groups of RCC-loops of order up to 30, by Artic in her dissertation [1].

It follows from a result of Zappa, that Conjecture 1.2 holds in case H is a Hall subgroup of G. Indeed, Zappa shows that if H is a nilpotent Hall subgroup of G such that there exists a transversal for $H \setminus G$ which is invariant under conjugation by H, then H has a normal complement; see [8, Proposizione XIV 12.1]. Now if H is abelian, the commutator subgroup of G is contained in this normal complement. In [6], Kochendörffer generalizes Zappa's result. We present the essence of Zappa's and Kochendörffer's argument in the following theorem.

Theorem 3.1. Let G be a finite group and let H be an abelian Hall subgroup of G. Suppose that there exists transversal T for $H \setminus G$ which is invariant under conjugation by H. Then $[G, G] \cap H = \{1\}$.

Proof. This is very much inspired by the proof of [6, Theorem]. The transfer map

$$\tau: G \to H, x \mapsto \prod_{t \in T} \lambda_x^T(t),$$

where $\lambda_x^T(t)$ is the unique element in H such that $tx = \lambda_x^T(t)t'$ for some $t' \in T$, is a group homomorphism; see [5, IV, Hauptsatz 1.4].

Let $h \in H$ and let $h' := \lambda_h^T(t)$ for some $t \in T$. Then th = h't' for some $t' \in T$. It follows that $hh'^{-1} = t^{-1}h't'h'^{-1} \in H$ and since T is H-invariant, we have $h't'h'^{-1} \in T$. Thus, $t = h't'h'^{-1}$. This yields that $h = h' = \lambda_h^T(t)$ and hence

$$\tau(h) = \prod_{t \in T} \lambda_h^T(t) = \prod_{t \in T} h = h^{|G:H|}$$

As H is an abelian Hall subgroup of G, the map $f: H \to H, h \mapsto h^{|G:H|}$ is an isomorphism. Thus ker $\tau \cap H = \{1\}$. Furthermore, $G/\ker \tau$ is abelian, because the image of τ is abelian as subgroup of H. Hence, $[G,G] \leq \ker \tau$. We conclude that $[G,G] \cap H \leq \ker \tau \cap H = \{1\}$. \Box

In the next example we show that for the conclusion of Conjecture 1.2 to be true, it is not enough to require the existence of an *H*-invariant transversal for $H \setminus G$.

Example 3.2. Let $G := Q_8$ and let H := Z(G). Then H is abelian and every transversal of $H \setminus G$ is H-invariant. However, H = Z(G) = [G, G]. Notice that there does not exist any G-invariant transversal for $H \setminus G$.

However, if p is a prime, G is a group of order p^3 and there exists a G-invariant transversal for $H \setminus G$, then Conjecture 1.2 holds.

Lemma 3.3. Let G be a p-group with [G,G] = Z(G) and |Z(G)| = p. Suppose that $H \leq G$ is abelian and that there exists a G-invariant transversal T of $H \setminus G$ containing 1. Then $[G,G] \cap H = \{1\}$.

Proof. Since T is G-invariant, T is a union of conjugacy classes of G. As $1 \in T$, we conclude that T contains at least p conjugacy classes with exactly one element, i.e. T contains at least p elements of Z(G). Hence $[G,G] = Z(G) \subseteq T$ and thus $[G,G] \cap H \subseteq T \cap H = \{1\}$. \Box

This lemma shows that Conjecture 1.2 holds for groups of order p^3 .

Acknowledgements

We are grateful to Gabriele Nebe for a crucial hint in the proof of Theorem 2.2. We thank Klaus Lux for carefully reading a first version of this article and for his comments which considerably improved the exposition.

References

- [1] K. ARTIC, On right conjugacy closed loops and right conjugacy closed loop folders, Dissertation, RWTH Aachen University, 2017.
- [2] M. ASCHBACHER, On Bol loops of exponent 2, J. Algebra 288 (2005), 99–136.
- [3] R. BAER, Nets and groups, Trans. Amer. Math. Soc. 46 (1939), 110–141.
- [4] THE GAP GROUP, GAP Groups, Algorithms, and Programming, Version 4.10.2; 2019, https://www.gap-system.org.
- [5] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, 1967.
- [6] R. KOCHENDÖRFFER, On supplements in finite groups, J. Austral. Math. Soc. 3 (1963), 63–67.
- [7] L. ORTJOHANN, Invariant transversals in finite groups, Master Thesis, RWTH Aachen University, 2019, https://arxiv.org/abs/2005.01380.
- [8] G. ZAPPA, Fondamenti di teoria dei gruppi, Vol. II, 18 Edizioni Cremonese, Rome, 1970.

LEHRSTUHL FÜR ALGEBRA UND ZAHLENTHEORIE, RWTH AACHEN UNIVER-SITY, 52056 AACHEN, GERMANY

Email address: G.H.: gerhard.hiss@math.rwth-aachen.de *Email address*: L.O.: lucia.ortjohann@rwth-aachen.de