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This article is a slightly expanded account of the series of four lectures I gave
at the conference. It is intended as a (non-comprehensive) survey covering some
important aspects of the representation theory of finite groups of Lie type, where
the emphasis is put on the problem of labelling the irreducible representations and
of finding their degrees. All three cases are covered, representations in characteristic
zero, in defining as well as in non-defining characteristics.

The first section introduces various ways of defining groups of Lie type and some
classes of important subgroups of them. The next three sections are devoted to the
representation theory of these groups, each section covering one of the three cases.

The lectures were addressed at a broad audience. Thus on the one hand, I have
tried to introduce even the most fundamental notions, but on the other hand, I have
also tried to get right to the edge of todays knowledge in the topics discussed. As
a consequence, the lectures were of a somewhat inhomogeneous level of difficulty.
In this article I have omitted the most introductory material. The reader may find
all background material needed from representation theory in the textbook [51] by
Isaacs.

For this survey I have included a few more examples, as well as most of the ref-
erences to the results presented in my talks. The sections in this article correspond
to the four lectures I have given, the subsections to the sections inside the lectures,
and the subsubsections to the individual slides.

1 The finite groups of Lie type

In this first section we give various examples and constructions for finite groups
of Lie type, we introduce the concepts of finite reductive groups and groups with
BN -pairs. All of this material can be found in the books by Carter [9, 10] and
Steinberg [77, 78].

1.1 Various constructions for finite groups of Lie type

One of the motivations to study finite groups of Lie type stems from the fact that
this class of groups constitutes a large portion of the class of all finite simple groups.

1.1.1 The classification of the finite simple groups

“Most” finite simple groups are closely related to finite groups of Lie type. This is
a consequence of the classification theorem of the finite simple groups.
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Theorem 1.1 (Classification of the finite simple groups) Every finite sim-
ple group is

(1) one of 26 sporadic simple groups; or
(2) a cyclic group of prime order; or
(3) an alternating group An with n ≥ 5; or
(4) closely related to a finite group of Lie type.

So what are finite groups of Lie type? A first answer could be: Finite analogues of
Lie groups.

1.1.2 The finite classical groups

Examples for finite analogues of Lie groups are the finite classical groups, i.e. full
linear groups or linear groups preserving a form of degree 2, defined over finite
fields. Let us list a few examples of classical groups.

Example 1.2 GLn(q), GUn(q), Sp2m(q), SO2m+1(q) . . . (q a prime power) are
classical groups. To be more specific, we may define

SO2m+1(q) = {g ∈ SL2m+1(q) | gtrJg = J},

with

J =

 1
. . .

1

 ∈ F2m+1×2m+1
q .

Related groups, e.g. SLn(q), PSLn(q), CSp2m(q), the conformal symplectic group,
etc. are also classical groups.

Not all classical groups are simple, but closely related to simple groups. For ex-
ample, the projective special linear group PSLn(q) = SLn(q)/Z(SLn(q)) is simple
(unless (n, q) = (2, 2), (2, 3)), but SLn(q) is not simple in general.

1.1.3 Exceptional groups

There are groups of Lie type which are not classical, namely, the exceptional groups
G2(q), F4(q), E6(q), E7(q), E8(q) (q a prime power), the twisted groups 2E6(q),
3D4(q) (q a prime power), the Suzuki groups 2B2(22m+1) (m ≥ 0), and the Ree
groups 2G2(32m+1) and 2F 4(22m+1) (m ≥ 0). The names of these groups, e.g. G2(q)
or E8(q) refer to simple complex Lie algebras or rather their root systems.

Some of the questions we are going to discuss in this section are: How are groups
of Lie type constructed? What are their properties, subgroups, orders, etc?

1.1.4 The orders of some finite groups of Lie type

The orders of groups of Lie type are given by nice formulae.
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Example 1.3 Here are these order formulae for some finite groups of Lie type.
|GLn(q)| = qn(n−1)/2(q − 1)(q2 − 1)(q3 − 1) · · · (qn − 1).
|GUn(q)| = qn(n−1)/2(q + 1)(q2 − 1)(q3 + 1) · · · (qn − (−1)n).
|SO2m+1(q)| = qm2

(q2 − 1)(q4 − 1) · · · (q2m − 1).
|F4(q)| = q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1).
|2F 4(q)| = q12(q − 1)(q3 + 1)(q4 − 1)(q6 + 1) (q = 22m+1).

Is there a systematic way to derive these formulae?

1.1.5 Root systems

We take a little detour to discuss root systems and related structures. Let V be a
finite-dimensional real vector space endowed with an inner product (−,−).

Definition 1.4 A root system in V is a finite subset Φ ⊂ V satisfying:
(1) Φ spans V as a vector space and 0 6∈ Φ.
(2) If α ∈ Φ, then rα ∈ Φ for r ∈ R, if and only if r ∈ {±1}.
(3) For α ∈ Φ let sα denote the reflection on the hyperspace orthogonal to α:

sα(v) = v − 2(v, α)
(α, α)

α, v ∈ V.

Then sα(Φ) = Φ for all α ∈ Φ.
(4) 2(β, α)/(α, α) ∈ Z for all α, β ∈ Φ.

1.1.6 Weyl group and Dynkin diagram

Let Φ be a root system in the inner product space V . The group

W := W (Φ) := 〈sα | α ∈ Φ〉 ≤ O(V )

is called the Weyl group of Φ. Another important notion is that of a base of Φ.
This is a subset Π ⊂ Φ such that

(1) Π is a basis of V .
(2) Every α ∈ Φ is an integer linear combination of Π with either only non-

negative or only non-positive coefficients.
The Weyl group acts regularly on the set of bases of Φ. The Dynkin diagram of Φ
is defined with respect to one such base. It is the graph with nodes α ∈ Π, and
4(α, β)2/(α, α)(β, β) edges between the nodes α and β. For example, the Dynkin
diagram of a root system of type Br looks as follows.

Br: f f f f f. . .
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1.1.7 Chevalley groups

Chevalley groups are subgroups of automorphism groups of finite classical Lie alge-
bras. A Classical Lie algebra is a Lie algebra corresponding to a finite-dimensional
simple Lie algebra g over C.

These have been classified by Killing and Cartan in the 1890s in terms of root
systems. Let Φ be the root system of g, and let Π be a base of Φ. It was shown by
Chevalley, that g has a particular basis, now called Chevalley basis, C = {er | r ∈
Φ, hr, r ∈ Π}, such that all structure constants with respect to C are integers.

Let gZ denote the Z-form of g constructed from C, i.e. the set of Z-linear combi-
nations of C inside g. Then gZ is a Lie algebra over the integers, free and of finite
rank as an abelian group. If k is any field, then gk := k ⊗Z gZ is the classical Lie
algebra corresponding to g.

1.1.8 Chevalley’s construction (1955, [11])

Let g be a finite-dimensional simple Lie algebra over C with Chevalley basis C. For
r ∈ Φ, ζ ∈ C, there is xr(ζ) ∈ Aut(g) defined by

xr(ζ) := exp(ζ · ad er).

Here, ad er denotes the endomorphism x 7→ [x, er] of g. The matrices of xr(ζ) with
respect to C have entries in Z[ζ]. This allows to define xr(t) ∈ Aut(gk) by replacing
ζ by t ∈ k. Then

G := 〈xr(t) | r ∈ Φ, t ∈ k〉 ≤ Aut(gk)

is the Chevalley group corresponding to g over k.
Names such as Ar(q), Br(q), G2(q), E6(q), etc. refer to the type of the root

system Φ of g.

1.1.9 Twisted groups (Tits, Steinberg, Ree, 1957 – 61)

Chevalley’s construction gives many of the finite groups of Lie type, but not all.
For example, the unitary group GUn(q) is not a Chevalley group in this sense.
However, GUn(q) is obtained from the Chevalley group GLn(q2) by twisting:

Let σ denote the automorphism (aij) 7→ (aq
ij)

−tr of GLn(q2). Then

GUn(q) = GLn(q2)σ := {g ∈ GLn(q2) | σ(g) = g}.

Similar constructions give the twisted groups 2E6(q), 3D4(q), and the Suzuki and
Ree groups 2B2(22m+1), 2G2(32m+1), 2F 4(22m+1). These constructions were found
by Tits, Steinberg and Ree between 1957 and 1961 (see [80, 75, 70, 71]), although
2B2(22m+1) was discovered in 1960 by Suzuki [79] by a different method.

1.2 Finite reductive groups

The construction discussed in this subsection introduces a decisive class of finite
groups of Lie type.
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1.2.1 Linear algebraic groups

Let F̄p denote the algebraic closure of the finite field Fp. For the purpose of this
survey, a (linear) algebraic group G over F̄p is a closed subgroup of GLn(F̄p) for
some n. Here, and in the following, topological notions such as closedness refer to
the Zariski topology of GLn(F̄p). The closed sets in the Zariski topology are the
zero sets of systems of polynomial equations.

Example 1.5 (1) SLn(F̄p) = {g ∈ GLn(F̄p) | det(g) = 1}.
(2) SOn(F̄p) = {g ∈ SLn(F̄p) | gtrJg = J} (n = 2m + 1 odd).

The algebraic group G is semisimple, if it has no closed connected soluble normal
subgroup 6= 1. It is reductive, if it has no closed connected unipotent normal
subgroup 6= 1. In particular, semisimple algebraic groups are reductive. For a
thorough treatment of linear algebraic group see the textbook by Humphreys [49].

1.2.2 Frobenius maps

Let G ≤ GLn(F̄p) be a connected reductive algebraic group. A standard Frobenius
map of G is a homomorphism

F := Fq : G→ G

of the form Fq((aij)) = (aq
ij) for some power q of p. (This implicitly assumes that

(aq
ij) ∈ G for all (aij) ∈ G.)

Example 1.6 SLn(F̄p) and SO2m+1(F̄p) admit standard Frobenius maps Fq for all
powers q of p.

A Frobenius map F : G → G is a homomorphism such that Fm is a standard
Frobenius map for some m ∈ N. If F is a Frobenius map, let q ∈ R, q ≥ 0 such
that qm is a power of p with Fm = Fqm .

1.2.3 Finite reductive groups

Let G be a connected reductive algebraic group over F̄p and let F be a Frobenius
map of G. Then

GF := {g ∈ G | F (g) = g}

is a finite group. The pair (G, F ) or the finite group G := GF is called finite
reductive group or finite group of Lie type, though the latter terminology is also
used in a broader sense.

Example 1.7 Let q be a power of p and let F = Fq be the corresponding standard
Frobenius map of GLn(F̄p), (aij) 7→ (aq

ij). Then GLn(F̄p)F = GLn(q), SLn(F̄p)F =
SLn(q), SO2m+1(F̄p)F = SO2m+1(q).
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All groups of Lie type, except the Suzuki and Ree groups can be obtained in this
way by a standard Frobenius map. The projective special linear group PSLn(q)
is not a finite reductive group unless n and q − 1 are coprime (in which case it is
equal to SLn(q)).

For the remainder of this section, (G, F ) denotes a finite reductive group over
F̄p.

1.2.4 The Lang-Steinberg theorem

One of the most important general results for finite reductive group is the following
theorem due to Lang and Steinberg.

Theorem 1.8 (Lang-Steinberg, 1956 [60]/1968 [78]) If G is connected, the
map G→ G, g 7→ g−1F (g) is surjective.

The assumption that G is connected is crucial here.

Example 1.9 Let G = GL2(F̄p), and F : (qij) 7→ (aq
ij), where q is a power of p.

Then there exists
[

a b
c d

]
∈ G such that

[
a b
c d

]−1 [
aq bq

cq dq

]
=

[
0 1
1 0

]
.

Rewriting this, we obtain the equation[
aq bq

cq dq

]
=

[
a b
c d

] [
0 1
1 0

]
=

[
b a
d c

]
.

Thus the Lang-Steinberg theorem assert in this case that there is a solution to the
system of equations:

aq = b, bq = a, cq = d, dq = c, ad− bc 6= 0.

The Lang-Steinberg theorem is used to derive structural properties of GF .

1.2.5 Maximal tori and the Weyl group

A torus of G is a closed subgroup isomorphic to F̄∗p× · · ·× F̄∗p. A torus is maximal,
if it is not contained in any larger torus of G. It is a crucial fact that any two
maximal tori of G are conjugate. This shows that the following notion is well
defined.

Definition 1.10 The Weyl group W of G is defined by W := NG(T)/T, where
T is a maximal torus of G.
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Example 1.11 (1) Let G = GLn(F̄p) and T the group of diagonal matrices. Then
T is a maximal torus of G, NG(T) is the group of monomial matrices, and W =
NG(T)/T can be identified with the group of permutation matrices, i.e. W ∼= Sn.

(2) Next let G = SO2m+1(F̄p) as defined in Example 1.2. Then

T := {diag[t1, . . . , tm, 1, t−1
m , . . . , t−1

1 | ti ∈ F̄∗p, 1 ≤ i ≤ m}

is a maximal torus of G.
For 1 ≤ i ≤ m− 1 let ṡi be the permutation matrix corresponding to the double

transposition (i, i + 1)(m− i,m− i + 1). Put

ṡm :=


I 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 I

 ,

where I denotes the identity matrix of degree m− 1. Then ṡ1, . . . , ṡm are elements
of NG(T), and the cosets si := ṡiT ∈ W , 1 ≤ i ≤ m, generate W , which is thus a
Coxeter group of type Bm (see below).

1.2.6 Maximal tori of finite reductive groups

A maximal torus of (G, F ) is a finite reductive group (T, F ), where T is an F -
stable maximal torus of G. A maximal torus of G = GF is a subgroup T of the
form T = TF for some maximal torus (T, F ) of (G, F ).

Example 1.12 A Singer cycle in GLn(q) is an irreducible cyclic subgroup of
GLn(q) of order qn − 1. We will show below that a Singer cycle is a maximal
torus of GLn(q).

The maximal tori of (G, F ) are classified (up to conjugation in G) by F -conjugacy
classes of W . These are the orbits in W under the action v.w := vwF (v)−1,
v, w ∈W .

1.2.7 The classification of maximal tori

Let T be an F -stable maximal torus of G, W = NG(T)/T.
Let w ∈ W , and ẇ ∈ NG(T) with w = ẇT. By the Lang-Steinberg theorem,

there is g ∈ G such that ẇ = g−1F (g). One checks that gT is F -stable, and
so (gT, F ) is a maximal torus of (G, F ). (Indeed, F (gT) = F (g)F (T)F (g)−1 =
g(ẇTẇ−1)g−1 = gT since ẇ ∈ NG(T).)

The map w 7→ (gT, F ) induces a bijection between the set of F -conjugacy classes
of W and the set of G-conjugacy classes of maximal tori of (G, F ). For more details
see [10, Section 3.3].

We say that gT is obtained from T by twisting with w.
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1.2.8 The maximal tori of GLn(q)

Let G = GLn(F̄p) and F = Fq a standard Frobenius morphism, where q is a power
of p.

Then F acts trivially on W = Sn, i.e. the maximal tori of G = GLn(q) are
parametrised by partitions of n. If λ = (λ1, . . . , λl) is a partition of n, we write Tλ

for the corresponding maximal torus. We have

|Tλ| = (qλ1 − 1)(qλ2 − 1) · · · (qλl − 1).

Each factor qλi − 1 of |Tλ| corresponds to a cyclic direct factor of Tλ of this order.
This follows form the considerations in the next subsection.

1.2.9 The structure of the maximal tori

Let T′ be an F -stable maximal torus of G, obtained by twisting the reference torus
T with w = ẇT ∈ W . This means that there is g ∈ G with g−1F (g) = ẇ and
T′ = gT. Then

T ′ = (T′)F ∼= TwF := {t ∈ T | t = ẇF (t)ẇ−1}.

Indeed, for t ∈ T we have gtg−1 = F (gtg−1) [= F (g)F (t)F (g)−1] if and only if
t ∈ TwF .

Example 1.13 Let G = GLn(F̄p), and T the group of diagonal matrices. Let
w = (1, 2, . . . , n) be an n-cycle. Then

TwF = {diag[t, tq, . . . , tq
n−1

] | t ∈ F̄p, t
qn−1 = 1},

and so TwF is cyclic of order qn − 1. It also follows that the maximal torus of G
corresponding to w acts irreducibly on Fn

q and thus is a Singer cycle. On the other
hand, a maximal torus of G corresponding to an element of W not conjugate to w
acts reducibly on V since it lies in a proper Levi subgroup. Since every semisimple
element of G, in particular a generator of a Singer cycle, lies in some maximal torus
of G, it follows that a a Singer cycle is indeed a maximal torus.

1.3 BN-pairs

The following axiom system was introduced by Jacques Tits to allow a uniform
treatment of groups of Lie type, not necessarily finite ones.

1.3.1 BN-pairs

We begin by defining what it means that a group has a BN -pair.

Definition 1.14 Let G be a group. The subgroups B and N of the group G form
a BN -pair, if the following axioms are satisfied:

(1) G = 〈B,N〉;
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(2) T := B ∩N is normal in N ;
(3) W := N/T is generated by a set S of involutions;
(4) If ṡ ∈ N maps to s ∈ S (under N →W ), then ṡBṡ 6= B;
(5) For each n ∈ N and ṡ as above, (BṡB)(BnB) ⊆ BṡnB ∪BnB.

The group W = N/T is called the Weyl group of the BN -pair of G. It is a Coxeter
group with Coxeter generators S.

1.3.2 Coxeter groups

Let M = (mij)1≤i,j≤r be a symmetric matrix with mij ∈ Z∪{∞} satisfying mii = 1
and mij > 1 for i 6= j. The group

W := W (M) :=
〈
s1, . . . , sr | (sisj)mij = 1(i 6= j), s2

i = 1
〉
group

(where the relation (sisj)mij = 1 is omitted if mij = ∞), is called the Coxeter
group of M , the elements s1, . . . , sr are the Coxeter generators of W .

The relations (sisj)mij = 1 (i 6= j) are called the braid relations. In view of
s2
i = 1, they can be written as

sisjsi · · · = sjsisj · · · mij factors on each side.

The matrix M is usually encoded in a Coxeter diagram, a graph with nodes cor-
responding to 1, . . . , r, and with number of edges between nodes i 6= j equal to
mij − 2.

Example 1.15 The involutions si introduced in Example 1.11(2) satisfy the rela-
tions s2

i = 1 for 1 ≤ i ≤ m, (sisi+1)3 = 1 for 1 ≤ i ≤ m − 1 and (sm−1sm)4 = 1.
All other pairs of the si commute. The matrix encoding these relations is called a
Coxeter matrix of type Bm. Its Coxeter diagram is as follows.

Bm: f f f f f. . .
m m− 1 2 1

1.3.3 The BN-pair of GLn(k) and of SOn(k)

Let k be a field and G = GLn(k). Then G has a BN -pair with:
• B the group of upper triangular matrices;
• N the group of monomial matrices;
• T = B ∩N the group of diagonal matrices;
• W = N/T ∼= Sn the group of permutation matrices.

Let n = 2m + 1 be odd and let SOn(k) = {g ∈ SLn(k) | gtrJg = J} ≤ GLn(k) be
the orthogonal group. If B, N are as above for GLn(k), then

B ∩ SOn(k), N ∩ SOn(k)

is a BN -pair of SOn(k). (This would not have been the case had we defined SOn(k)
with respect to an orthonormal basis as SOn(k) = {g ∈ SLn(k) | gtrg = I}.) Using
Examples 1.11 and 1.15 we see that the Weyl group of SOn(k) is a Coxeter group
of type Bm.
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1.3.4 Split BN-pairs of characteristic p

Let G be a group with a BN -pair (B,N). This is said to be a split BN -pair of
characteristic p, if the following additional hypotheses are satisfied:

(6) B = UT with U = Op(B), the largest normal p-subgroup of B, and T a
complement of U .

(7)
⋂

n∈N nBn−1 = T . (Recall T = B ∩N .)

Example 1.16 (1) A semisimple algebraic group G over F̄p and a finite group of
Lie type of characteristic p have split BN -pairs of characteristic p.

In G one chooses a maximal torus T and a maximal closed connected soluble
subgroup B of G containing T. Such a B is called a Borel subgroup of G. Then B
and NG(T) form a split BN -pair of G of characteristic p.

(2) If G = GLn(F̄p) or GLn(q), q a power of p, then U is the group of upper
triangular unipotent matrices. In the latter case, U is a Sylow p-subgroup of G.

1.3.5 Parabolic subgroups and Levi subgroups

Let G be a group with a split BN -pair of characteristic p. Any conjugate of B is
called a Borel subgroup of G. A parabolic subgroup of G is one containing a Borel
subgroup.

Let P ≤ G be a parabolic subgroup. Then

P = UP L = LUP (1)

such that UP = Op(P ) is the largest normal p-subgroup of P , and L is a complement
to UP in P . The decomposition (1) is called a Levi decomposition of P , and L is a
Levi complement of P , and a Levi subgroup of G.

A Levi subgroup is itself a group with a split BN -pair of characteristic p.

1.3.6 Examples for parabolic subgroups

In classical groups, parabolic subgroups are the stabilisers of isotropic subspaces.
Let G = GLn(q), and (λ1, . . . , λl) a partition of n. Then

P =


 GLλ1(q) ? ?

. . . ?
GLλl

(q)




is a typical parabolic subgroup of G. A corresponding Levi subgroup is

L =


 GLλ1(q)

. . .
GLλl

(q)


 ∼= GLλ1(q)× · · · ×GLλl

(q).

If B denotes, once again, the group of upper triangular matrices in G, then a Levi
decomposition of B is given by B = UT with T the diagonal matrices and U the
upper triangular unipotent matrices.
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1.3.7 The Bruhat decomposition

Let G be a group with a BN -pair. Then

G =
⋃̇

w∈W

BwB (2)

(we write Bw := Bẇ if ẇ ∈ N maps to w ∈ W under N → W ). The disjoint
union (2) of G into B,B-double cosets, is called the Bruhat decomposition of G.
(The Bruhat decomposition for GLn(k) follows from the Gaussian algorithm.)

Now suppose that the BN -pair is split, B = UT = TU . Let w ∈ W . Then
ẇT = Tẇ since T � N , and so BwB = BwU . Moreover, there is a subgroup
Uw ∈ U such that BwU = BwUw, with “uniqueness of expression”. This means
that every element g ∈ BwUw can be written in a unique way as g = bẇu with
b ∈ B and u ∈ Uw. If furthermore, G is finite, this implies

|G| = |B|
∑

w∈W

|Uw|.

1.3.8 The orders of the finite groups of Lie type

Let G be a finite group of Lie type of characteristic p. Then G has a split BN -pair
of characteristic p. Thus

|G| = |B|
∑

w∈W

|Uw|.

Assume for simplicity that G = GF for a standard Frobenius map F = Fq. Then
|Uw| = q`(w), where `(w) is the length of w ∈W , i.e. the length of the shortest word
in the Coxeter generators S of W expressing w.

By theorems of Solomon (1966, [72]) and Steinberg (1968, [78]),

∑
w∈W

q`(w) =
r∏

i=1

qdi − 1
q − 1

,

where d1, . . . , dr are the degrees of the basic polynomial invariants of W . This gives
the formulae for |G| displayed in Example 1.3. An analogous, but slightly more
complicated argument yields the order formulae for the twisted groups. For details
see [9, Chapter 14].

2 Representations in defining characteristic

In this section we introduce the fundamental problems in the representation theory
of finite groups of Lie type in the defining characteristic case. A comprehensive
account of the knowledge in this area is given in Jantzen’s monograph [57]. See
also [50].
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2.1 Classification of representations

2.1.1 A fundamental problem in representation theory

Let G be a finite group and k a field. It is a fundamental fact that there are
only finitely many irreducible k-representations of G up to equivalence. This sug-
gests the problem of classifying all irreducible representations of G over k. More
ambitious is the following fundamental task:

Classify all irreducible representations of all finite simple groups over
all fields.

As already mentioned, “most” finite simple groups are groups of Lie type, and as
a first step towards a classification of their irreducible representations one needs
to find labels for these, their degrees, etc. It is useful to begin with the case of
algebraically closed fields k. Instead of talking of representations we also use the
equivalent language of kG-modules.

2.1.2 Three Cases

In the following, let G = GF be a finite reductive group. Recall that G is a
connected reductive algebraic group over F̄p and that F is a Frobenius morphism
of G. Let k be algebraically closed with char(k) = ` ≥ 0. It is natural to distinguish
three cases:

1. ` = p (usually k = F̄p); defining characteristic
2. ` = 0; ordinary representations
3. ` > 0, ` 6= p; non-defining characteristic

In this section we consider Case 1, and the remaining two sections are devoted to
Cases 2 and 3.

2.2 Representations of (finite) reductive groups

2.2.1 A rough survey

Let us begin with a rough survey. Let k = F̄p and let (G, F ) be a finite reductive
group over k.

By a k-representation of G we understand an algebraic homomorphism, i.e. a
homomorphism of groups that is also a morphism of algebraic varieties. We list
some fundamental facts about the classification of irreducible k-representations of
G and of G = GF .

1. An irreducible k-representation of G has finite degree.
2. The irreducible k-representations of G are classified by dominant weights, i.e.

we have labels for these irreducible k-representations.
3. Under a natural condition on G, every irreducible k-representation of G =

GF is the restriction of an irreducible k-representation of G to G.
We thus have to discuss the following questions. What are dominant weights?
Which irreducible representations of G restrict to irreducible representations of G?
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2.2.2 Character group and cocharacter group

For the remainder of this lecture, let G be a connected reductive algebraic group
over k = F̄p and let T be a maximal torus of G. (All of these are conjugate.)
Recall that T ∼= k∗ × k∗ × · · · × k∗. The number r of factors is an invariant of G,
the rank of G.

Put X := X(T) := Hom(T, k∗). Again, Hom refers to algebraic homomorphisms
of algebraic groups. Then X is an abelian group which we write additively. Thus
X ∼=

⊕r
1 Hom(k∗, k∗). Now Hom(k∗, k∗) ∼= Z, so X is a free abelian group of rank r.

(Indeed, every χ ∈ Hom(k∗, k∗) is of the form χ(t) = tz for some z ∈ Z.) Similarly,
Y := Y (T) := Hom(k∗,T) is free abelian of rank r.

The groups X and Y are called the character group and cocharacter group,
respectively. There is a natural duality X × Y → Z, (χ, γ) 7→ 〈χ, γ〉, defined by
χ ◦ γ ∈ Hom(k∗, k∗) ∼= Z.

2.2.3 The character groups and cocharacter groups of GLn(k) and SLn(k)

Let G = GLn(k). Take

T := {diag[t1, t2, . . . , tn] | t1, . . . , tn ∈ k∗},

the maximal torus of diagonal matrices. (Thus GLn(k) has rank n.) The character
group X has basis ε1, . . . , εn with

εi(diag[t1, t2, . . . , tn]) = ti.

The cocharacter group Y has basis ε′1, . . . ε
′
n with

ε′i(t) = diag[1, . . . 1, t, 1, · · · , 1],

where the t is on position i. Clearly, {εi} and {ε′i} are dual with respect to the
pairing 〈−,−〉.

Now let G = SLn(k) with k = F̄p. Take

T := {diag[t1, t2, . . . , tn] | t1, . . . , tn ∈ k∗, t1t2 · · · tn = 1} ,

the maximal torus of diagonal matrices. (Thus SLn(k) has rank n − 1.) The
character group X has basis ε1, . . . , εn−1 with

εi(diag[t1, t2, . . . , tn]) = ti.

Y has basis ε′1, . . . ε
′
n−1 with

ε′′i (t) = diag[1, . . . 1, t, 1, · · · , 1, t−1],

where the t is on position i. Clearly, {εi} and {ε′′i } are dual with respect to the
pairing 〈−,−〉.
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2.2.4 Roots and coroots

Let B be a Borel subgroup of G containing T. Then B = UT with U � B and
U ∩T = {1}. (Recall that G has a split BN -pair of characteristic p.)

The minimal subgroups of U normalised by T are called root subgroups. A root
subgroup is isomorphic to Ga := (k, +). The action of T on a root subgroup
gives rise to a homomorphism T → Aut(Ga). Since Aut(Ga) ∼= k∗, we obtain
an element of X. The characters obtained this way are the positive roots of G
with respect to T and B. The set of positive roots is denoted by Φ+, and the set
Φ := Φ+ ∪ (−Φ+) ⊂ X is the root system of G.

One can also define a set Φ∨ ⊂ Y of coroots of G with respect to T and B.
Indeed, let α ∈ Φ+ and let Uα ≤ U be the corresponding root subgroup. Then
there is a homomorphism ϕ : SL2(k)→ G with

ϕ

{[
1 a
0 1

]
| a ∈ k

}
= Uα,

and

ϕ

{[
a 0
0 a−1

]
| a ∈ k∗

}
≤ T.

Now define α∨ ∈ Y = Hom(k∗,T) by α∨(a) := ϕ

{[
a 0
0 a−1

]}
for a ∈ k∗.

2.2.5 The roots and the coroots of GLn(k) and of SLn(k) and the roots
of SO2m+1(k)

Let G = GLn(k) and T the maximal torus of diagonal matrices. We choose B as
group of upper triangular matrices. Then U is the subgroup of upper triangular
unipotent matrices.

The root subgroups are the groups

Uij := {In + aIij | a ∈ k}, 1 ≤ i < j ≤ n,

where Iij denotes the elementary matrix with 1 on position (i, j) and 0 elsewhere.
The positive root αij determined by Uij equals εi − εj .

Indeed, if t = diag[t1, . . . , tn], then t(In +aIij)t−1 = In + tit
−1
j aIij . On the other

hand, (εi − εj)(t) = tit
−1
j . We have

Φ = {αij | αij = εi − εj , 1 ≤ i 6= j ≤ n}

and
Φ∨ = {α∨ij | α∨ij = ε′i − ε′j , 1 ≤ i 6= j ≤ n}.

Note that ZΦ and ZΦ∨ have rank n− 1.
Now let G = SLn(k) and T be as in 2.2.3 and let B and U be as above. The

root subgroups are the same as for GLn(q). The positive root αij determined by
Uij equals εi − εj if j 6= n, and αin = εi +

∑n−1
j=1 εj . We have α∨ij = ε′′i − ε′′j for
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i < j < n and α∨in = ε′′i for i < n. In this example X/ZΦ is cyclic of order n, and
Y = ZΦ∨.

Finally, assume that n = 2m + 1 and p are odd, and let G = SOn(k). Let T, B
and U denote, respectively, the group of diagonal, upper triangular and upper trian-
gular unipotent matrices contained in G. Then T is as in Example 1.11. Clearly, a
basis of X = X(T) consists of ε1, . . . , εm with εi(diag[t1, . . . , tm, 1, t−1

m , . . . , t−1
1 ]) =

ti, 1 ≤ i ≤ m. The root subgroups are the groups

Uij := {In + aIij − aI2m−j+2,2m−i+2 | a ∈ k}, 1 ≤ i < j ≤ m,

together with

U′
ij = {In + aIi,2m−j+2 − aIj,2m−i+2 | a ∈ k}, 1 ≤ i < j ≤ m,

and

Ui = {In + aIi,m+1 − aIm+1,2m−i+2 − a2/2Ii,2m−i+2}, 1 ≤ i ≤ m.

The positive roots αij and α′ij determined by Uij and U′
ij , respectively, equal εi−εj

and εi + εj , respectively. Moreover, the positive roots determined by Ui equals εi,
1 ≤ i ≤ m. In this case X = ZΦ.

2.2.6 The root datum

The quadruple (X, Φ, Y,Φ∨) constructed from G satisfies:
1. X and Y are free abelian groups of the same rank and there is a duality

X × Y → Z, (χ, γ) 7→ 〈χ, γ〉.
2. Φ and Φ∨ are finite subsets of X and of Y , respectively, and there is a bijection

Φ→ Φ∨, α 7→ α∨.
3. For α ∈ Φ we have 〈α, α∨〉 = 2. Denote by sα the “reflection” of X defined

by
sα(χ) = χ− 〈χ, α∨〉α,

and let s∨α be its adjoint (s∨α(γ) = γ − 〈α, γ〉α∨).
Then sα(Φ) = Φ and s∨α(Φ∨) = Φ∨.

A quadruple (X, Φ, Y,Φ∨) as above is called a root datum.
The algebraic group G is determined by its root datum (and p) up to isomor-

phism. More precisely, we have the following. Suppose that G and G1 are con-
nected reductive groups over F̄p with Borel subgroups B = UT and B1 = U1T1,
respectively. Let, furthermore, ΓG := (X, Φ, Y,Φ∨) and ΓG1 := (X1,Φ1, Y1,Φ∨

1 ) be
the corresponding root data. There is an obvious notion of isomorphism of root
data.

Theorem 2.1 (Isomorphism theorem) Suppose that f : ΓG1 → ΓG is an iso-
morphism of root data. Then there exists an isomorphism ϕ : G→ G1 of algebraic
groups with ϕ(T) = T1. Moreover, ϕ is uniquely determined up to conjugation
in T.

An exact statement and a proof of the isomorphism theorem can be found in
Springer’s book [73, Thm. 9.6.2].
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2.2.7 The Weyl group

The Weyl group W = NG(T)/T acts on X and we have

W ∼= 〈sα | α ∈ Φ〉 ≤ Aut(X).

Suppose that G is semisimple. Then rankX = rank ZΦ. In this case Φ is a root
system in V := X⊗ZR and W is its Weyl group (where V is equipped with an inner
product (−,−) satisfying 〈β, α∨〉 = 2(β, α)/(α, α) for all α, β ∈ Φ). Moreover, W
is a Coxeter group with Coxeter generators {sα | α ∈ Π}, where Π ⊂ Φ+ is a base
of Φ. Note that Π is uniquely determined by this property. Indeed, Π consists of
those elements of Φ+ which cannot be written as sums of elements of Φ+.

2.2.8 Weight spaces

Let M be a finite-dimensional algebraic kG-module. This means that the k-re-
presentation of G afforded by M is algebraic. For λ ∈ X = X(T) = Hom(T, k∗)
put

Mλ := {v ∈M | tv = λ(t)v for all t ∈ T}.

If Mλ 6= {0}, then λ is called a weight of M and Mλ is the corresponding weight
space. (Thus Mλ is a simultaneous eigenspace for all t ∈ T.) It is a crucial fact,
that M is a direct sum of its weight spaces, i.e.

M =
⊕
λ∈X

Mλ.

This follows from the fact that the elements of T act as commuting semisimple
linear operators on M .

2.2.9 Dominant weights and simple modules

The elements of the set

X+ := {λ ∈ X | 0 ≤ 〈λ, α∨〉 for all α ∈ Φ+} ⊂ X

are called the dominant weights of T (with respect to Φ+).

Example 2.2 Let G = GLn(F̄p) and let T be the maximal torus of diagonal
matrices. Use the notation for the roots and coroots of G from subsubsection 2.2.5.

An element λ ∈ X is of the form λ =
∑n

i=1 λiεi with λi ∈ Z for all 1 ≤ i ≤ n.
Now λ ∈ X+ if and only if 〈λ, α∨ij〉 ≥ 0 for all 1 ≤ i < j ≤ n. Since α∨ij = ε′i − ε′j ,
this is the case if and only if λi − λj ≥ 0 for all 1 ≤ i < j ≤ n. It follows that X+

corresponds to the ordered sequences λ1 ≥ λ2 ≥ . . . ≥ λn of integers.

We order X by µ ≤ λ if and only if λ− µ is a sum of roots in Π. We then have
the following classification of the simple kG-modules.
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Theorem 2.3 (Chevalley, late 1950s, cf. [12]) (1) For each λ ∈ X+ there is
a simple kG-module L(λ).

(2) dim L(λ)λ = 1. If µ is a weight of L(λ), then µ ≤ λ. (Consequently, λ is
called the highest weight of L(λ).)

(3) If M is a simple kG-module, then M ∼= L(λ) for some λ ∈ X+.

The dimensions of the dim L(λ) are not known except for some special cases.

2.2.10 The natural and the adjoint representations of GLn(k)

Let G = GLn(k). Let M := kn be the natural module of kG. Then the weights of
M are the εi, 1 ≤ i ≤ n. The highest of these is ε1 (recall that εi − εj ∈ Φ+ for
i < j). Thus M = L(ε1).

Next, let M := {x ∈ kn×n | tr(x) = 0}. Then M is a simple kG-module by
conjugation (the adjoint module). The weights of M are the roots αij and 0. The
highest one of these is α1n = ε1 − εn. Thus M = L(ε1 − εn) = L(αin).

2.2.11 Steinberg’s tensor product theorem

For q = pm, put

X+
q := {λ ∈ X | 0 ≤ 〈λ, α∨〉 < q for all α ∈ Π} ⊂ X+.

(Recall that Π ⊂ Φ+ is a base of Φ.) Let F = Fp denote the standard Frobenius
morphism (aij) 7→ (ap

ij). If M is a kG-module, we put M [i] := M , with twisted
action g.v := F i(g).v, g ∈ G, v ∈M .

Theorem 2.4 (Steinberg’s tensor product theorem, [76]) For λ ∈ X+
q write

λ =
∑m−1

i=0 piλi with λi ∈ X+
p . (This is called the p-adic expansion of λ.) Then

L(λ) = L(λ0)⊗k L(λ1)[1] ⊗k · · · ⊗k L(λm−1)[m−1].

Thus it suffices to determine the dimensions of the simple modules Lλ for λ in the
finite set X+

p . The next theorem gives a classification of the simple modules for
the finite groups of Lie type.

Theorem 2.5 (Steinberg, [76]) If λ ∈ X+
q , then the restriction of L(λ) to G =

GF m
is simple. If G is simply connected, i.e. Y = ZΦ∨, then every simple kG-

module arises this way.

2.2.12 The irreducible representations of SL2(k)

Let G = SL2(k). Then G acts as group of k-algebra automorphisms on the poly-
nomial ring k[x1, x2] in two variables, the action being defined by:[

a b
c d

] [
x1

x2

]
=

[
ax1 + bx2

cx1 + dx2

]
.
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For j = 0, 1, . . . let Mj denote the set of homogeneous polynomials in k[x1, x2]
of degree j. Then Mj is G-invariant, hence a kG-module, and dim Mj = j + 1.
Moreover, Mj is a simple kG-module, in fact Mj = L(jε1), if 0 ≤ j < p. In
general, write j = j0 + pj1 + · · · + pmjm with 0 ≤ ji < p. Then, by Steinberg’s
tensor product theorem, L(jε1) = Mj0 ⊗k M

[1]
j1
⊗k · · · ⊗k M

[m]
jm

.
Thus SL2(p) has exactly the simple modules M0, . . . ,Mp−1 of dimensions 1, . . . , p.

This description of the p-modular irreducible representations of SL2(q) (for powers
q of p) is due to Brauer and Nesbitt [6].

2.2.13 Weyl modules

From now on assume that G is simply connected, i.e. Y = ZΦ∨. For each λ ∈ X+,
there is a distinguished finite-dimensional kG-module V (λ). These V (λ) are called
Weyl modules.

The Weyl modules are constructed via reduction modulo p. Let Φ be the root
system of G and let g be the semisimple Lie algebra over C with root system Φ.
For λ ∈ X+, let V (λ)C be a simple g-module with highest weight λ. This has
a suitable Z-form V (λ)Z. Then V (λ) := k ⊗Z V (λ)Z can be equipped with the
structure of a kG-module.

This construction generalises the construction of the Chevalley groups as groups
of automorphisms on a Z-form of their adjoint module.

2.2.14 Formal characters

Let M be a finite-dimensional kG-module. Recall that

M =
⊕
λ∈X

Mλ.

Clearly, dim M can be recovered by the vector (dim Mλ)λ∈X . It is convenient to
view this as an element of ZX, the group ring of X over Z. We introduce a Z-basis
eλ, λ ∈ X, of ZX with eλeµ = eλ+µ.

Definition 2.6 The formal character of M is the element

chM :=
∑
λ∈X

dim Mλ eλ

of ZX.

2.2.15 Characters of Weyl modules

The characters of the Weyl modules V (λ) can be computed from Weyl’s character
formula, which is not reproduced here. In particular, dim V (λ) is known.

Put aλ,µ := [V (λ):L(µ)] := multiplicity of L(µ) as a composition factor of V (λ).
It is known that aλ,λ = 1, and if aλ,µ 6= 0, then µ ≤ λ. We obviously have

chV (λ) = chL(λ) +
∑
µ<λ

aλ,µ chL(µ).
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Once the aλ,µ are known, chL(λ) and thus dim L(λ) can be computed recursively
from chV (µ) with µ ≤ λ (there are only finitely many such µ).

2.3 Lusztig’s conjecture

Lusztig’s conjecture proposes a formula to compute the multiplicities aλ,µ in certain
cases. The conjecture is in terms of Kazhdan-Lusztig polynomials.

2.3.1 The Iwahori-Hecke algebra

Let M = (mij)1≤i,j≤r be a symmetric matrix with mij ∈ Z∪{∞} satisfying mii = 1
and mij > 1 for i 6= j. Recall that

W =
〈
s1, . . . , sr | (sisj)mij = 1(i 6= j), s2

i = 1
〉
group ,

is the Coxeter group of M . Let A be a commutative ring and v ∈ A. The algebra

HA,v(W ) :=
〈
Ts1 , . . . , Tsr | T 2

si
= v1 + (v − 1)Tsi , braid rel’s

〉
A-alg.

is called the Iwahori-Hecke algebra of W over A with parameter v. The braid
relations are

TsiTsjTsi · · · = TsjTsiTsj · · · (mij factors on each side).

It is a well known fact that HA,v(W ) is a free A-algebra with A-basis Tw, w ∈W .
Note that HA,1(W ) ∼= AW , so that HA,v(W ) is a deformation of AW , the group

algebra of W over A.

2.3.2 Kazhdan-Lusztig polynomials

Let W be a Coxeter group as above and let ≤ denote the Bruhat order on W . Let
v be an indeterminate, put A := Z[v, v−1] and u := v2.

There is an involution ι on HA,u(W ) determined by ι(v) = v−1 and ι(Tw) =
(Tw−1)−1 for all w ∈ W . (The square root v of u is needed in order for Tw to be
invertible in HA,u(W ).)

Theorem 2.7 (Kazhdan-Lusztig, [58]) There is a unique basis C ′
w, w ∈ W of

HA,u(W ) such that
(1) ι(C ′

w) = C ′
w for all w ∈W ;

(2) C ′
w = v−`(w)

∑
y≤w Py,wTw with Pw,w = 1, Py,w ∈ Z[u], deg Py,w ≤ (`(w) −

`(y)− 1)/2 for all y < w ∈W .

The Py,w ∈ Z[u], y ≤ w ∈W , are called the Kazhdan-Lusztig polynomials of W .
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2.3.3 The affine Weyl group

Recall that the Weyl group W acts on X as a group of linear transformations. Let
ρ := 1

2

∑
α∈Φ+ α, and define the dot-action of W as follows:

w.λ := w(λ + ρ)− ρ, λ ∈ X, w ∈W.

Define
Wp = 〈sα,z | α ∈ Φ+, z ∈ Z〉.

Here, sα,z(λ) = sα.λ+zpα is an affine reflection of X. Then Wp is a Coxeter group,
called the affine Weyl group.

Each Wp-orbit on X contains a unique element in C̄ := {λ ∈ X | 0 ≤ 〈λ +
ρ, α∨〉 ≤ p for all α ∈ Φ+}.

2.3.4 Lusztig’s conjecture

Let λ0 ∈ X with 0 < 〈λ0 + ρ, α∨〉 < p for all α ∈ Φ+. Such a λ0 only exists if
p ≥ h := h(W ) := max{〈ρ, α∨〉 | α ∈ Φ+} + 1). The following theorem combines
special cases of the linkage principle and the translation principle.

Theorem 2.8 (Humhreys, 1971, [48]; Jantzen, 1974, [56]) For w ∈Wp such
that w.λ0 ∈ X+

p we have chL(w.λ0) =
∑

w′ bw,w′ chV (w′.λ0), with w′ ∈ Wp such
that w′.λ0 ≤ w.λ0 and w′.λ0 ∈ X+. The bw,w′ are independent of λ0.

For p ≥ h, the computation of chL(λ) for any λ ∈ X+ can be reduced to one of
these cases. In the following formulation of Lusztig’s conjecture, let w0 denote the
longest element in W ≤Wp.

Conjecture 2.9 (Lusztig’s conjecture, 1980, [64]) The numbers bw,w′ are giv-
en by bw,w′ = (−1)`(w)+`(w′)Pw0w′,w0w(1), in particular, the bw,w′ are also indepen-
dent of p.

Theorem 2.10 (Andersen-Jantzen-Soergel, [2]) Lusztig’s conjecture is true
provided p >> 0.

3 Representations in characteristic zero

Here we describe, to some extent, the ordinary representation theory of finite groups
of Lie type. The material in this section can be found in the textbooks [10, 15] by
Carter and Digne-Michel.

3.1 Harish-Chandra theory

In the following, unless otherwise said, let G be a finite reductive group of charac-
teristic p. Also, k denotes an algebraically closed field of characteristic ` ≥ 0. In
Section 2 we have considered the situation ` = p. In this section we will mainly,
but not exclusively, investigate the case ` = 0.
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Recall that there is a distinguished class of subgroups of G, the parabolic sub-
groups. One way to describe them is through the concept of split BN -pairs of
characteristic p. A parabolic subgroup P has a Levi decomposition P = LU ,
where U = Op(P )�P is the unipotent radical of P , and L a Levi complement of U
in P , i.e. L is a Levi subgroup of G. Levi subgroups of G resemble G; in particular,
they are again groups of Lie type. Inductively, we may use the representations of
the Levi subgroups to obtain information about the representations of G. This is
the idea behind Harish-Chandra theory.

3.1.1 Harish-Chandra induction

Assume from now on that ` 6= p. Let L be a Levi subgroup of G, and M a kL-
module. View M as a kP -module via π : P → L (a.v := π(a).v for v ∈M , a ∈ P ).
Put

RG
L (M) := {f : G→M | a.f(b) = f(ab) for all a ∈ P, b ∈ G} .

This construction is analogous to the definition of modular forms in number theory.
Then RG

L (M) is a kG-module, called Harish-Chandra induced module. The
action of G is given by right multiplication in the arguments of the functions in
RG

L (M): g.f(b) := f(bg), g, b ∈ G, f ∈ RG
L (M).

It is an important fact that RG
L (M) is independent of the choice of P with P → L.

In the case of ` > 0, this result is due to Dipper-Du [18], and, independently, to
Howlett-Lehrer [47].

3.1.2 Centraliser algebras

With L and M as before, put

H(L,M) := EndkG(RG
L (M)).

Then H(L,M) is the centraliser algebra (or Hecke algebra) of the kG-module
RG

L (M), i.e.

H(L,M) =
{
γ ∈ Endk(RG

L (M)) | γ(g.f) = g.γ(f) for all g ∈ G, f ∈ RG
L (M)

}
.

The centraliser algebra H(L,M) is used to analyse the submodules and quotients
of RG

L (M).

3.1.3 Iwahori’s example

The following example is a special case of the results of Iwahori [52]. It marks
the first appearance of the Iwahori-Hecke algebra in the representation theory of
finite groups. Suppose that ` = 0. Let G = GLn(q), L = T , the group of diagonal
matrices, M the trivial kL-module. Then

H(L,M) = Hk,q(Sn),
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the Iwahori-Hecke algebra over k with parameter q associated to the Weyl group Sn

of G. Recall the k-algebra presentation of Hk,q(Sn):〈
T1, . . . , Tn−1 | braid relations , T 2

i = q1k + (q − 1)Ti

〉
k-algebra ,

with the braid relations

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n− 2).

3.1.4 Harish-Chandra classification

Let V be a simple kG-module. Then V is called cuspidal, if V is not a submodule
of RG

L (M) for some proper Levi subgroup L of G and some kL-module M . Harish-
Chandra theory, i.e. Harish-Chandra induction and the concept of cuspidality yields
the following classification.

Theorem 3.1 (Harish-Chandra [40], Lusztig [63, 65], ` = 0; Geck-Hiss-
Malle [36], ` > 0) There is a bijection

{V | V simple kG-module } /iso.
l(L,M, θ) |

L Levi subgroup of G
M simple, cuspidal kL-module

θ irreducible k-representation of H(L,M)

 /conj.

This theorem allows to partition the isomorphism classes of the simple kG-modules
into Harish-Chandra series. Two simple kG-modules lie in the same Harish-
Chandra series, if and only if they arise from the same cuspidal pair (L,M), where
L is a Levi subgroup and M a simple, cuspidal kL-module.

3.1.5 Problems in Harish-Chandra theory

The above theorem leads to the following three fundamental tasks:
(1) Determine the cuspidal pairs (L,M).
(2) For each of these, “compute” H(L,M).
(2) Classify the irreducible k-representations of H(L,M).

The state of the art in this program in case ` = 0 is mainly due to Lusztig (see
[65]):

(1) Lusztig has constructed and classified the simple cuspidal kG-modules. They
arise from étale cohomology groups of Deligne-Lusztig varieties.

(2) For each cuspidal pair (L,M) consider the ramification group

WG(L,M) := (NG(L,M) ∩N)L/L

(the subgroup N ≤ G here is the one from the BN -pair of G). If G = GF with
Z(G) connected, then it turns out that WG(L,M) is a Coxeter group. More-
over, the centraliser algebra H(L,M) is an Iwahori-Hecke algebra corresponding to
WG(L,M).

(3) Furthermore, H(L,M) ∼= kWG(L,M). This is a consequence of the Tits
deformation theorem.
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3.1.6 Example: SL2(q)

Let G = SL2(q) and ` = 0. The group T of diagonal matrices is the only proper
Levi subgroup; it is a cyclic group of order q−1. Put WG(T ) := (NG(T )∩N)/T (=

NG(T)/T ). Then WG(T ) = 〈T, s〉/T with s =
[

0 1
−1 0

]
, and so |WG(T )| = 2.

Let M be a simple kT -module. Then dim M = 1 and M is cuspidal, and
dim RG

T (M) = q + 1 (since [G : B] = q + 1).
Case 1: WG(T,M) = {1}. Then H(T,M) ∼= k and RG

T (M) is simple.
Case 2: WG(T,M) = WG(T ). Then H(T,M) ∼= kWG(T ), and RG

T (M) is the
sum of two simple kG-modules.

3.1.7 Drinfeld’s example

The cuspidal simple kSL2(q)-modules have dimensions q − 1 and (q − 1)/2 (the
latter only occur if p is odd). How can these cuspidal modules be constructed?

Consider the affine curve

C = {(x, y) ∈ F̄2
p | xyq − xqy = 1}.

Then G = SL2(q) acts on C by linear change of coordinates. Hence G also acts on
the étale cohomology group

H1
c (C, Q̄r),

where r is a prime different from p. It turns out that the simple Q̄rG-submodules
of H1

c (C, Q̄r) are the cuspidal ones (here k = Q̄r).

3.1.8 Goals and results

Suppose now and for the remainder of this section that ` = 0. We write Irr(G) for
the set of irreducible k-characters of G. Since two irreducible kG-representations
are equivalent if and only if their characters are equal, we may reformulate our
main goal of the classification of the irreducible representations as follows:

Describe all ordinary character tables of all finite simple groups and
related finite groups.

This aim is almost completed. For the alternating groups and their covering groups
it was achieved by Frobenius and Schur. There exists labels for the irreducible
characters and the conjugacy classes of these groups, and the character value cor-
responding to a pair of labels can be computed either explicitly or from a recursive
formula.

The work for the groups of Lie type is due to many people: Steinberg, Green,
Deligne, Lusztig, Shoji, and many others, where, however, Lusztig played a domi-
nant role. To date, only “a few” character values are missing.

The character tables for the sporadic groups and other “small” groups are con-
tained in the famous Atlas of Finite Groups by Conway, Curtis, Norton, Parker
and Wilson [13].
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3.2 Deligne-Lusztig theory

We begin this subsection by displaying an example of a generic character table.

3.2.1 The generic character table for SL2(q), q even

C1 C2 C3(a) C4(b)

χ1 1 1 1 1

χ2 q 0 1 −1

χ3(m) q + 1 1 ζam + ζ−am 0

χ4(n) q − 1 −1 0 −ξbn − ξ−bn

Here, the parameters a, b label conjugacy classes, and m,n label irreducible char-
acters. The range of these parameters is as follows: a,m = 1, . . . , (q − 2)/2,
b, n = 1, . . . , q/2. Moreover, the entries ζ and ξ are “generic roots of unity”,
namely

ζ := exp(
2π
√
−1

q − 1
), ξ := exp(

2π
√
−1

q + 1
).

The conjugacy classes C3(a) and C4(b) have representatives as follows[
µa 0
0 µ−a

]
∈ C3(a) (µ ∈ Fq a primitive (q − 1)th root of unity),

[
νb 0
0 ν−b

]
∈∼ C4(b) (ν ∈ Fq2 a primitive (q + 1)th root of unity).

(The symbol ∈∼ indicates that an element in class C4(b) is conjugate in GL2(F̄2) to
the element on the left hand side.) Specialising q to 4, gives the character table of
SL2(4) ∼= A5.

3.2.2 Deligne-Lusztig varieties

Let r be a prime different from p and put k := Q̄r. Let (G, F ) be a finite reductive
group, G = GF . Deligne and Lusztig [14] construct for each pair (T, θ), where T
is an F -stable maximal torus of G, and θ ∈ Irr(TF ), a generalised character RG

T,θ

of G. (A generalised character of G is an element of Z[Irr(G)].)
Let (T, θ) be a pair as above. Choose a Borel subgroup B = TU of G with Levi

subgroup T. (In general B is not F -stable.) Consider the Deligne-Lusztig variety
associated to B,

XB = {g ∈ G | g−1F (g) ∈ U}.

This is an algebraic variety over F̄p.
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3.2.3 Deligne-Lusztig generalised characters

The finite groups G = GF and T = TF act on XB, and these actions commute.
Thus the étale cohomology group H i

c(XB, Q̄r) is a Q̄r[G × T ]-module, and so its
θ-isotypic component H i

c(XB, Q̄r)θ is a Q̄rG-module, whose character is denoted
by ch H i

c(XB, Q̄r)θ.
Only finitely many of the vector spaces H i

c(XB, Q̄r) are 6= 0. Now put

RG
T,θ =

∑
i

(−1)ich H i
c(XB, Q̄r)θ.

Then RG
T,θ is independent of the choice of B containing T.

3.2.4 Properties of Deligne-Lusztig characters

The above construction and the following facts are due to Deligne and Lusztig,
[14].

Facts 3.2 Let (T, θ) be a pair as above. Then
(4) RG

T,θ(1) = ±[G : T ]p′ .
(2) If T is contained in an F -stable Borel subgroup B, then RG

T,θ = RG
T (θ) is the

Harish-Chandra induced character.
(3) If θ is in general position, i.e. NG(T, θ)/T = {1}, then ±RG

T,θ is an irreducible
character.

(4) For χ ∈ Irr(G), there is a pair (T, θ) such that χ occurs in the (unique)
expansion of RG

T,θ into Irr(G). (Recall that Irr(G) is a basis of Z[Irr(G)].)

3.2.5 Unipotent characters

Definition 3.3 (Deligne-Lusztig, [14]) A k-character χ of G is called unipo-
tent, if χ is irreducible, and if χ occurs in RG

T,1 for some F -stable maximal torus
T of G, where 1 denotes the trivial character of T = TF . We write Irru(G) for the
set of unipotent characters of G.

The above definition of unipotent characters uses étale cohomology groups. So far,
no elementary description known, except for GLn(q); see below. Lusztig classi-
fied Irru(G) in all cases, independently of q. Harish-Chandra induction preserves
unipotent characters, so it suffices to construct the cuspidal unipotent characters.

3.2.6 The unipotent characters of GLn(q)

Let G = GLn(q). Then Irru(G) = {χ ∈ Irr(G) | χ occurs in RG
T (1)}. This is the

set of constituents in the permutation character with respect to the action on the
cosets of the subgroup of upper triangular matrices. Moreover, there is a bijection

Pn ↔ Irru(G), λ↔ χλ,

where Pn denotes the set of partitions of n.
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The degrees of the unipotent characters are “polynomials in q”:

χλ(1) = qd(λ) (q
n − 1)(qn−1 − 1) · · · (q − 1)∏

h(λ)(qh − 1)
,

with a certain d(λ) ∈ N, and where h(λ) runs through the hook lengths of λ.

3.2.7 The degrees of the unipotent characters of GL5(q)

λ χλ(1)

(5) 1
(4, 1) q(q + 1)(q2 + 1)
(3, 2) q2(q4 + q3 + q2 + q + 1)
(3, 12) q3(q2 + 1)(q2 + q + 1)
(22, 1) q4(q4 + q3 + q2 + q + 1)
(2, 13) q6(q + 1)(q2 + 1)
(15) q10

3.3 Lusztig’s Jordan decomposition of characters

In this subsection we introduce Lusztig’s classification of the set of irreducible
characters of G, known as Jordan decomposition of characters.

3.3.1 Jordan decomposition of elements

An important concept in the classification of elements of a finite reductive group
is the Jordan decomposition of elements.

Since G ≤ GLn(F̄p), every g ∈ G has finite order. Hence g has a unique
decomposition as

g = su = us (3)

with u a p-element and s a p′-element. It follows from Linear algebra that u is
unipotent, i.e. all eigenvalues of u are equal to 1, and s is semisimple, i.e. diagonal-
isable.

The decomposition (3) is called the Jordan decomposition of g ∈ G. If g ∈ G =
GF , then so are u and s.

3.3.2 Jordan decomposition of conjugacy classes

This yields a model classification for the classification of the irreducible characters
of G in case ` = 0 and, conjecturally, also in case 0 6= ` 6= p.

For g ∈ G with Jordan decomposition g = us = su, we write CG
u,s for the

G-conjugacy class containing g. This gives a labelling

{conjugacy classes of G}
l

{CG
s,u | s semisimple, u ∈ CG(s) unipotent}.
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(In the above, the labels s and u have to be taken modulo conjugacy in G and
CG(s), respectively.) Moreover,

|CG
s,u| = |G :CG(s)||CCG(s)

1,u |.

This is the Jordan decomposition of conjugacy classes.

3.3.3 Example: The general linear group once more

G = GLn(q), s ∈ G semisimple. Then

CG(s) ∼= GLn1(q
d1)×GLn2(q

d2)× · · · ×GLnm(qdm)

with
∑m

i=1 nidi = n. (This gives finitely many class types.) Thus it suffices to
classify the set of unipotent conjugacy classes U of G. By Linear algebra we have

U ←→ Pn = {partitions of n}

CG
1,u ←→ (sizes of Jordan blocks of u)

This classification is generic, i.e., independent of q.
In general, i.e. for other groups, it depends slightly on q. For example, SL2(q)

has two unipotent conjugacy classes if q is even, and three, otherwise.

3.3.4 Jordan decomposition of characters

Let (G, F ) be a connected reductive group. Let (G∗, F ) denote the dual reductive
group. If G is determined by the root datum (X, Φ, Y,Φ∨), then G∗ is defined by
the root datum (Y, Φ∨, X,Φ).

Example 3.4 (1) If G = GLn(F̄p), then G∗ = G.
(2) If G = SO2m+1(F̄p), then G∗ = Sp2m(F̄p).

Main Theorem 3.5 (Lusztig, [65]; Jordan decomposition of characters)
Suppose that Z(G) is connected. Then there is a bijection

Irr(G)←→ {χs,λ | s ∈ G∗ semisimple , λ ∈ Irru(CG∗(s))}

(s taken modulo conjugacy in G∗). Moreover, χs,λ(1) = |G∗:CG∗(s)|p′ λ(1).

3.3.5 The irreducible characters of GLn(q)

Let G = GLn(q). Then

Irr(G) = {χs,λ | s ∈ G semisimple, λ ∈ Irru(CG(s))}.

We have CG(s) ∼= GLn1(q
d1) ×GLn2(q

d2) × · · · ×GLnm(qdm) with
∑m

i=1 nidi = n.
Thus λ = λ1 � λ2 � · · ·� λm with λi ∈ Irru(GLni(q

di)). Moreover,

χs,λ(1) =
(qn − 1) · · · (q − 1)∏m

i=1 [(qdini − 1) · · · (qdi − 1)]

m∏
i=1

λi(1).

The character table of GLn(q) has first been determined by Green (1955, [37])
after preliminary work by Steinberg (1951, [74]).
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3.3.6 The degrees of the irreducible characters of GL3(q)

As an example, we give the degrees of all irreducible characters of GL3(q).

CG(s) λ χs,λ(1)

GL1(q3) (1) (q − 1)2(q + 1)

GL1(q2)×GL1(q) (1) � (1) (q − 1)(q2 + q + 1)

GL1(q)3 (1) � (1) � (1) (q + 1)(q2 + q + 1)

GL2(q)×GL1(q)
(2) � (1)

(1, 1) � (1)
q2 + q + 1

q(q2 + q + 1)

GL3(q)
(3)

(2, 1)
(1, 1, 1)

1
q(q + 1)

q3

3.3.7 Concluding remarks

There are also results by Lusztig [66] in case Z(G) is not connected, e.g. if G =
SLn(F̄p) or G = Sp2m(F̄p) with p odd.

For such groups, CG∗(s) is not always connected, and the problem then is to
define unipotent characters for CG∗(s)F .

The Jordan decomposition of conjugacy classes and characters allow for the
construction of generic character tables in all cases.

Let {G(q) | q a prime power} be a series of finite groups of Lie type, e.g.
{GUn(q)} or {SLn(q)} (n fixed). Then there exists a finite set D of polynomi-
als in Q[x] such that the following holds: If χ ∈ Irr(G(q)), then there is f ∈ D with
χ(1) = f(q).

4 Representations in non-defining characteristic

In this final section we report on the knowledge in the representation theory of
groups of Lie type in the non-defining characteristic case. The reference [22] con-
tains a more detailed survey. The current knowledge in this area is presented in
the monograph by [8] by Cabanes and Enguehard.

Throughout this section let G be a finite group and let k be an algebraically
closed field of characteristic ` ≥ 0. If G is a finite group of Lie type of characteris-
tic p, we also assume that ` 6= p.

4.1 Harish-Chandra theory

We begin with a recollection of Harish-Chandra theory.

4.1.1 Harish-Chandra Classification: Recollection

Let G be a finite group of Lie type of characteristic p 6= `. Recall that Harish-
Chandra theory yields a classification of the simple kG-modules according to The-
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orem 3.1. This implies three tasks, on whose state of the art we now comment.
• H(L,M) is an Iwahori-Hecke algebra corresponding to an “extended” Coxeter

group, namely WG(L,M) (Geck-Hiss-Malle [36], which follows the arguments
of Howlett-Lehrer [46]); the parameters of H(L,M) are not known in general.
• If G = GLn(q), everything is known with respect to these tasks (Dipper,

[16, 17] and Dipper-James, [19, 20, 21])
• if G is classical group and ` is “linear” for G, everything known with respect to

these tasks (Gruber-Hiss [39]). (We shall introduce linear primes and discuss
these results below.)

• In general, the classification of the cuspidal pairs is open.

4.1.2 Example: SO2m+1(q)

This example is a special case of the results in [36]. Let G = SO2m+1(q), assume
that ` > m, and put e := min{i | ` divides qi − 1}, the order of q in F∗` . Any Levi
subgroup L of G containing a cuspidal unipotent (see below) module M is of the
form

L = SO2m′+1(q)×GL1(q)r ×GLe(q)s.

In this case WG(L,M) ∼= W (Br)×W (Bs), where W (Bj) denotes a Weyl group of
type Bj . Moreover, H(L,M) ∼= Hk,q(Br)⊗Hk,q(Bs), with q as follows:

Br : f f f f f. . .
? q q q q

Bs : f f f f f. . .
? 1 1 1 1

The question marks indicate the unknown parameters.

4.2 Decomposition numbers

Decomposition numbers allow the passage from characteristic zero representations
of a group to representation in positive characteristic. For groups of Lie type they
also allow to define the concept of unipotent modules.

From now on assume that ` > 0.

4.2.1 Brauer Characters

Let X be a k-representation of G of degree d. The character χX of X defined as
usual by g 7→ Trace(X(g)) has some deficiencies, e.g. χX(1) only gives the degree
d of X modulo `. Instead one considers the Brauer character ϕX of X. This is
obtained by consistently lifting the eigenvalues of the matrices X(g) for g ∈ G`′

to characteristic 0. (Here, G`′ is the set of `-regular elements of G.) Thus ϕX :
G`′ → K, where K is a suitable field with char(K) = 0, and ϕX(g) = sum of the
eigenvalues of X(g) (viewed as elements of K). In particular, ϕX(1) equals the
degree of X.
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We write IBr`(G) for the set of irreducible Brauer characters of G, IBr`(G) =
{ϕ1, . . . , ϕn}. (If ` - |G|, then IBr`(G) = Irr(G).) Let g1, . . . , gn be representatives
of the conjugacy classes contained in G`′ (same n as above!). The square matrix

[ϕi(gj)]1≤i,j≤l

is the Brauer character table or `-modular character table of G.

4.2.2 Goals and Results

Once more, we reconsider our aim.

Describe all Brauer character tables of all finite simple groups and re-
lated finite groups.

In contrast to the case of ordinary character tables (cf. Section 3), this is wide
open:

(1) For alternating groups the knowledge is complete only up to A17.
(2) For groups of Lie type only partial results are known, on which we shall

comment below.
(3) For sporadic groups up to McL and other “small” groups (of order ≤ 109),

there is an Atlas of Brauer Characters, see [55]. More information is available on the
web site of the Modular Atlas Project: (http://www.math.rwth-aachen.de/˜MOC/).

4.2.3 The Decomposition Numbers

For χ ∈ Irr(G) = {χ1, . . . , χm}, write χ̂ for the restriction of χ to G`′ . Then there
are integers dij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n such that χ̂i =

∑l
j=1 dij ϕj . These

integers are called the decomposition numbers of G modulo `. The matrix D = [dij ]
is the decomposition matrix of G.

4.2.4 Properties of Brauer characters

Two irreducible k-representations are equivalent if and only if their Brauer char-
acters are equal. IBr`(G) is linearly independent (in Maps(G`′ ,K)) and so the
decomposition numbers are uniquely determined. The elementary divisors of D
are all 1, i.e. the decomposition map defined by Z[Irr(G)] → Z[IBr`(G)], χ 7→ χ̂ is
surjective. Thus:

Knowing Irr(G) and D is equivalent to knowing Irr(G) and IBr`(G).

If G is `-soluble, Irr(G) and IBr`(G) can be sorted such that D has shape

D =
[

In

D′

]
,

where In is the (n× n) identity matrix (Fong-Swan theorem).
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4.3 Unipotent Brauer characters

The concept of decomposition numbers can be used to define unipotent Brauer
characters of a finite reductive group.

4.3.1 Unipotent Brauer characters

Let (G, F ) be a finite reductive group of characteristic p. Recall that char(k) =
` 6= p. Recall also that

Irru(G) = {χ ∈ Irr(G) | χ occurs in RG
T,1 for some maximal torus T of G}.

This yields a definition of IBru
` (G).

Definition 4.1 (Unipotent Brauer characters) IBru
` (G) = {ϕj ∈ IBr`(G) |

dij 6= 0 for some χi ∈ Irru(G)}. The elements of IBru
` (G) are called the unipotent

Brauer characters of G.

A simple kG-module is unipotent, if its Brauer character is.

4.3.2 Jordan decomposition of Brauer characters

The investigations are guided by the following main conjecture.

Conjecture 4.2 Suppose that Z(G) is connected. Then there is a labelling

IBr`(G)↔ {ϕs,µ | s ∈ G∗ semisimple , ` - |s|, µ ∈ IBru
` (CG∗(s))},

such that ϕs,µ(1) = |G∗:CG∗(s)|p′ µ(1).
Moreover, D can be computed from the decomposition numbers of unipotent

characters of the various CG∗(s).

This conjecture is known to be true for GLn(q) (Dipper-James, [19, 20, 21]) and
in many other cases (Bonnafé-Rouquier, [5]). The truth of this conjecture would
reduce the computation of decomposition numbers to unipotent characters. Con-
sequently, we will restrict to this case in the following.

4.3.3 The unipotent decomposition matrix

Put Du := restriction of D to Irru(G)× IBru
` (G).

Theorem 4.3 (Geck-Hiss, [33]; Geck, [32]) Under some mild conditions on `
(for the exact form of these see [32]), |Irru(G)| = |IBru

` (G)| and Du is invertible
over Z.

Thus under these conditions, the numbers of unipotent ordinary characters and
of unipotent `-modular characters are the same. This already indicates a close
connection between the two representation theories.

The following conjecture is due to Geck, who has formulated it in a much more
precise form, which is published in [34, Conjecture 3.4]
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Conjecture 4.4 (Geck) Under some mild conditions on `, the sets Irru(G) and
IBru

` (G) can be ordered in such a way that Du has shape
1
? 1
...

...
. . .

? ? ? 1

 .

This would give a canonical bijection Irru(G)←→ IBru
` (G).

4.3.4 About Geck’s Conjecture

Geck’s conjecture on Du is known to hold in the following cases:
• GLn(q) (Dipper-James [19, 20])
• GUn(q) (Geck [29])
• G classical and ` “large” (cyclic defect) (Fong-Srinivasan, [26, 28])
• G a classical group and ` “linear” (Gruber-Hiss [39])
• Sp4(q) (White [82, 83, 84])
• Sp6(q) (White [85]; An-Hiss [1])
• G2(q) (Hiss-Shamash [43, 44, 45])
• F4(q) (Köhler [59])
• E6(q) (Geck-Hiss [34]; Miyachi [67])
• Steinberg triality groups 3D4(q), q odd (Geck [30]; Himstedt [41])
• Suzuki groups (cyclic defect)
• Ree groups (Himstedt-Huang [42])

4.3.5 Linear primes

Let (G, F ) be a finite reductive group, where F = Fq is the standard Frobenius
morphism (aij) 7→ (aq

ij). Put e := min{i | ` divides qi − 1}, the order of q in F∗` . If
G is classical ( 6= GLn(q)) and e and ` are odd, then ` is linear for G. This notion
is due to Fong and Srinivasan [25, 27].

Example 4.5 G = SO2m+1(q), |G| = qm2
(q2−1)(q4−1) · · · (q2m−1). If `||G| and

` - q, then ` | q2d − 1 for some minimal d. Thus ` | qd − 1 (` linear and e = d odd)
or ` | qd + 1 (e = 2d).

Now Irru(G) is a union of Harish-Chandra series E1, . . . , Er. This follows from the
fact that Harish-Chandra induction preserves unipotent characters, i.e. the irre-
ducible constituents of a Harish-Chandra induced unipotent character are unipo-
tent.

Theorem 4.6 (Fong-Srinivasan, [25, 27]) Suppose that G 6= GLn(q) is clas-
sical and that ` is linear. Then Du = diag[∆1, . . . ,∆r] with square matrices ∆i

corresponding to Ei.
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In fact it follows from the results of Fong and Srinivasan that if ` is linear, unipotent
characters of distinct Harish-Chandra series lie in distinct `-blocks.

Let ∆ := ∆i be one of the decomposition matrices from above. Assume however,
that ∆ does not correspond to the principal series of the orthogonal group SO+

2m(q).
Then the rows and columns of ∆ are labelled by bipartitions of a for some integer a.
This is a consequence of Harish-Chandra theory and the fact that the Iwahori-Hecke
algebras of the Harish-Chandra induced cuspidal characters are of type B.

Theorem 4.7 (Gruber-Hiss, [39]) Under the above assumptions,

∆ =


Λ0 ⊗ Λa

. . .
Λi ⊗ Λa−i

. . .
Λa ⊗ Λ0

 .

Here Λi ⊗ Λa−i is the Kronecker product of matrices, labelled by those bipartitions
whose first component is a partition of i, and Λi is the `-modular unipotent decom-
position matrix of GLi(q).

In the cases where the theorem applies, the decomposition matrices are described
by decomposition matrices of general linear groups. This justifies the term “linear”
for these primes.

4.4 (q-)Schur algebras

4.4.1 The v-Schur algebra

Let v be an indeterminate an put A := Z[v, v−1]. Dipper and James [21] have
defined a remarkable A-algebra SA,v(Sn), called the generic v-Schur algebra, satis-
fying:

(1) SA,v(Sn) is free and of finite rank over A.
(2) SA,v(Sn) is constructed from the generic Iwahori-Hecke algebra HA,v(Sn),

which is contained in SA,v(Sn) as an embedded subalgebra (a subalgebra with a
different unit).

(3) Q(v) ⊗A SA,v(Sn) is a quotient of the quantum group Uu(gln) with v = u2.
(This is due to Beilinson, Lusztig and MacPherson [4]; see also [23].)

4.4.2 The q-Schur algebra

Let G = GLn(q). Then Du = (dλ,µ), with λ, µ ∈ Pn. Let SA,v(Sn) be the v-
Schur algebra, and let S := Sk,q(Sn) be the finite-dimensional k-algebra obtained
by specialising v to the image of q ∈ k. This is called the q-Schur algebra, and
satisfies (cf. [21]):

(1) S has a set of (finite-dimensional) standard modules Sλ, indexed by Pn.
(2) The simple S-modules Dλ are also labelled by Pn.
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(3) If [Sλ : Dµ] denotes the multiplicity of Dµ as a composition factor in Sλ,
then [Sλ : Dµ] = dλ,µ.
As a consequence, the dλ,µ are bounded independently of q and of `.

4.4.3 Connections to defining characteristics

Let Sk,q(Sn) be the q-Schur algebra introduced above. Suppose that ` | q − 1 so
that q ≡ 1(mod `). Then Sk,q(Sn) ∼= Sk(Sn), where Sk(Sn) is the Schur algebra
defined by Schur and investigated by J. A. Green [38].

A partition λ of n may be viewed as a dominant weight of GLn(k) (identifying
λ = (λ1, λ2, . . . , λm) ∈ Pn with the dominant weight λ1ε1 + λ2ε2 + · · ·+ λmεm; see
Example 2.2). Thus there are corresponding kGLn(k)-modules V (λ) and L(λ).

If λ and µ are partitions of n, we have

[V (λ) : L(µ)] = [Sλ : Dµ] = dλ,µ.

The first equality comes from the significance of the Schur algebra, the second from
that of the q-Schur algebra.

Thus the `-modular decomposition numbers of GLn(q) for prime powers q with
` | q− 1, determine the composition multiplicities of certain simple modules L(µ)
in certain Weyl modules V (λ) of GLn(k), namely if λ and µ are partitions of n.

Facts 4.8 (Schur, Green) Let λ and µ be partitions with at most n parts. Then:
1. [V (λ) : L(µ)] = 0, if λ and µ are partitions of different numbers (see [38,

6.6]).
2. If λ and µ are partitions of r ≥ n, then the composition multiplicity [V (λ) :

L(µ)] is the same in GLn(k) and GLr(k) (see [38, Remark in 6.6]).

The theory of Schur considers only polynomial representations, i.e. homomorphisms
which are also morphisms of algebraic varieties. This is a subclass of all algebraic
representations. The highest weights of polynomial representations are charac-
terised by the fact that the coefficients λi (with respect to the basis ε1, . . . , εn;
see 2.2.3) are all non-negative. Hence the `-modular decomposition numbers of all
GLr(q), r ≥ 1, ` | q−1 determine the composition multiplicities of all polynomial
Weyl modules of GLn(k).

4.4.4 Connections to symmetric group representations

As for the Schur algebra, there are standard kSn- modules Sλ, called Specht mod-
ules, labelled by the partitions λ of n. The simple kSn-modules Dµ are labelled
by the `-regular partitions µ of n (no part of µ is repeated ` or more times). The
`-modular decomposition numbers of Sn are the numbers [Sλ : Dµ]. We write λ′

for the conjugate of a partition λ.

Theorem 4.9 (James, [53]) [Sλ:Dµ] = [V (λ′):L(µ′)], if µ is `-regular (notation
on the right hand side from GLn(k) case).
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Karin Erdmann has shown, that any [V (λ):L(µ)] occurs as a decomposition number
of a symmetric group, even if µ is not `-regular.

Theorem 4.10 (Erdmann, [24]) For partitions λ, µ of n, there are `-regular
partition t(λ′), t(µ′) of `n + (`− 1)n(n− 1)/2 such that

[V (λ):L(µ)] = [St(λ′):Dt(µ′)].

4.4.5 Amazing conclusion

Recall that ` is a fixed prime and k an algebraically closed field of characteristic `.
Each of the following three families of numbers can be determined from any one of
the others:

1. {[Sλ : Dµ] | λ, µ ∈ Pn, n ∈ N}, i.e. the `-modular decomposition numbers of
Sn for all n.

2. The `-modular decomposition numbers of the unipotent characters of GLn(q)
for all primes powers q with ` | q − 1 and all n.

3. The composition multiplicities of the simple polynomial kGLn(k)-modules in
the polynomial Weyl modules of GLn(k) for all n.

Thus all these problems are really hard.

4.4.6 James’ conjecture

Let G = GLn(q). Recall that e = min{i | ` divides qi−1}. James [54] has computed
all matrices Du for n ≤ 10.

Conjecture 4.11 (James, [54]) If e` > n , then Du only depends on e (neither
on ` nor q).

Theorem 4.12 (1) The conjecture is true for n ≤ 10 (James, [54]).
(2) If ` >> 0, Du only depends on e (Geck, [31]).

In fact, Geck proved Du = DeD` for two square matrices De and D`, and that
D` = I for ` >> 0. This result has later been extended by Geck and Rouquier [35].

Theorem 4.13 (Lascoux-Leclerc-Thibon [61, 62]; Ariki [3]; Varagnolo-
Vasserot [81]) The matrix De can be computed from the canonical basis of a
certain highest weight module of the quantum group Uv(ŝle).

In order to compute all unipotent decomposition matrices Du for GLn(q), one needs
to determine the matrices D`. Once James’ Conjecture 4.11 is proved, it suffices
to consider the primes ` < e/n. Notice that e = 1 if ` | q − 1. If, in addition,
` > n, then De is the identity matrix, since in this case the Schur algebra Sk(Sn)
is semisimple. Thus the result of Theorem 4.13 can not be used to compute any
decomposition number of a symmetric group along the lines indicated in 4.4.5.
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4.4.7 A unipotent decomposition matrix for GL5(q)

Let G = GL5(q), e = 2 (i.e., ` | q + 1 but ` - q − 1), and assume ` > 2. Then Du

equals
(5) 1

(4, 1) 1
(3, 2) 1
(3, 12) 1 1 1
(22, 1) 1 1 1
(2, 13) 1 1
(15) 1 1 1

The triangular shape defines ϕλ, λ ∈ P5.

4.4.8 On the degree polynomials

The degrees of the ϕλ are “polynomials in q”.

λ ϕλ(1)

(5) 1
(4, 1) q(q + 1)(q2 + 1)
(3, 2) q2(q4 + q3 + q2 + q + 1)
(3, 12) (q2 + 1)(q5 − 1)
(22, 1) (q3 − 1)(q5 − 1)
(2, 13) q(q + 1)(q2 + 1)(q5 − 1)
(15) q2(q3 − 1)(q5 − 1)

Theorem 4.14 (Brundan-Dipper-Kleshchev, [7]) The degrees of χλ(1) and
of ϕλ(1) as polynomials in q are the same.

4.4.9 Genericity

Let {G(q) | q a prime power with ` - q} be a series of finite groups of Lie type, e.g.
{GUn(q)} or {SO2m+1(q)} (n, respectively m fixed).

Question 4.15 Is an analogue of James’ conjecture true for {G(q)}?

If yes, there are only finitely many matrices Du to compute (there are only finitely
many e’s and finitely many “small” `’s). The following is a weaker form.

Conjecture 4.16 The entries of Du are bounded independently of q and `.

This conjecture is known to be true for GLn(q) (Dipper-James [21]), G classical and
` linear (Gruber-Hiss, [39]), and for GU3(q) and Sp4(q) (Okuyama-Waki, [69, 68]).
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