# Codes and invariant theory. 

Gabriele Nebe

Lehrstuhl für Algebra und Zahlentheorie
Clifford Weil Groups and Symmetrizations

## RWIHAACHEN UNIVERSTTY

## Complete weight enumerators,

Let $V$ be a finite abelian group (e.g. $V=\mathbb{F}_{q}$ ) and $C \subseteq V^{N}$. For $c=\left(c_{1}, \ldots, c_{N}\right) \in V^{N}$ and $v \in V$ put

$$
a_{v}(c):=\left|\left\{i \in\{1, \ldots, N\} \mid c_{i}=v\right\}\right|
$$

Then

$$
\operatorname{cwe}_{C}:=\sum_{c \in C} \prod_{v \in V} x_{v}^{a_{v}(c)} \in \mathbb{C}\left[x_{v}: v \in V\right]
$$

is called the complete weight enumerator of $C$.
The tetracode.

$$
\begin{gathered}
t_{4}:=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] \leq \mathbb{F}_{3}^{4} \\
\mathrm{cwe}_{t_{4}}\left(x_{0}, x_{1}, x_{2}\right)=x_{0}^{4}+x_{0} x_{1}^{3}+x_{0} x_{2}^{3}+3 x_{0} x_{1}^{2} x_{2}+3 x_{0} x_{1} x_{2}^{2} \\
\operatorname{hwe}_{t_{4}}(x, y)=\operatorname{cwe}_{t_{4}}(x, y, y)=x^{4}+8 x y^{3}
\end{gathered}
$$

Clear. $\operatorname{hwe}_{C}(x, y)=\operatorname{cwe}_{C}(x, y, \ldots, y)$

## A formal notion of a Type of a code.

## Definition of Type, part I

A Type is a quadrupel $(R, V, \Phi, \beta)$ with

- $R$ is a finite ring (with 1 ) and ${ }^{J}: R \rightarrow R$ an involution of $R$. $(a b)^{J}=b^{J} a^{J}$ and $\left(a^{J}\right)^{J}=a$ for all $a, b \in R$
- $V$ a finite left $R$-module.
- $\beta: V \times V \rightarrow \mathbb{Q} / \mathbb{Z}$ regular, $\epsilon$-hermitian:
$\beta(r v, w)=\beta\left(v, r^{J} w\right)$ for $r \in R, v, w \in V$,
$v \mapsto \beta(v, \cdot) \in \operatorname{Hom}(V, \mathbb{Q} / \mathbb{Z})$ isomorphism,
$\epsilon \in Z(R), \epsilon \epsilon^{J}=1 \beta(v, w)=\beta(w, \epsilon v)$ for $v, w \in V$.
- $\Phi \subset \operatorname{Quad}_{0}(V, \mathbb{Q} / \mathbb{Z})$ a set of quadratic mappings on $V$.
and certain additional properties.


## Codes of a given Type.

Let $(R, V, \Phi, \beta)$ be a Type.

## Definition.

- A code $C$ over the alphabet $V$ is an $R$-submodule of $V^{N}$.
- The dual code (with respect to $\beta$ ) is

$$
C^{\perp}:=\left\{x \in V^{N} \mid \beta^{N}(x, c)=\sum_{i=1}^{N} \beta\left(x_{i}, c_{i}\right)=0 \text { for all } c \in C\right\} .
$$

$C$ is called self-dual (with respect to $\beta$ ) if $C=C^{\perp}$.

- Then $C$ is called isotropic (with respect to $\Phi$ ) if

$$
\phi^{N}(c):=\sum_{i=1}^{N} \phi\left(c_{i}\right)=0 \text { for all } c \in C \text { and } \phi \in \Phi
$$

## A formal notion of a Type of a code.

## Definition

The quadruple $(R, V, \Phi, \beta)$ as above is called a Type if

- $\Phi \leq \operatorname{Quad}_{0}(V, \mathbb{Q} / \mathbb{Z})$ is a subgroup and for all $r \in R, \phi \in \Phi$ the mapping $\phi[r]: x \mapsto \phi(r x)$ is again in $\Phi$.
Then $\Phi$ is an $R$-qmodule.
- For all $\phi \in \Phi$ there is some $r_{\phi} \in R$ such that

$$
\lambda(\phi)(v, w)=\phi(v+w)-\phi(v)-\phi(w)=\beta\left(v, r_{\phi} w\right) \text { for all } v, w \in V
$$

- For all $r \in R$ the mapping

$$
\phi_{r}: V \rightarrow \mathbb{Q} / \mathbb{Z}, v \mapsto \beta(v, r v) \text { lies in } \Phi .
$$

## Type I,II,III,IV in the new language.

Type I codes ( $2_{\mathrm{I}}$ )

$$
R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x^{2}=\beta(x, x), 0\right\}
$$

Type II code (2 $2_{\text {II }}$ ).

$$
R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\phi: x \mapsto \frac{1}{4} x^{2}, 2 \phi=\varphi, 3 \phi, 0\right\}
$$

Type III codes (3).

$$
R=\mathbb{F}_{3}=V, \beta(x, y)=\frac{1}{3} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{3} x^{2}=\beta(x, x), 2 \varphi, 0\right\}
$$

Type IV codes $\left(4^{H}\right)$.

$$
R=\mathbb{F}_{4}=V, \beta(x, y)=\frac{1}{2} \operatorname{tr}(x \bar{y}), \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x \bar{x}, 0\right\}
$$

where $\bar{x}=x^{2}$.

## The Clifford-Weil group associated to a Type.

## Definition.

Let $T:=(R, V, \beta, \Phi)$ be a Type. Then the associated Clifford-Weil group $\mathcal{C}(T)$ is a subgroup of $\mathrm{GL}_{|V|}(\mathbb{C})$

$$
\left.\mathcal{C}(T)=\left\langle m_{r}, d_{\phi}, h_{e, u_{e}, v_{e}}\right| r \in R^{*}, \phi \in \Phi, e=u_{e} v_{e} \in R \text { sym. id. }\right\rangle
$$

Let $\left(e_{v} \mid v \in V\right)$ denote a basis of $\mathbb{C}^{|V|}$. Then

$$
\begin{gathered}
m_{r}: e_{v} \mapsto e_{r v}, \quad d_{\phi}: e_{v} \mapsto \exp (2 \pi i \phi(v)) e_{v} \\
h_{e, u_{e}, v_{e}}: e_{v} \mapsto|e V|^{-1 / 2} \sum_{w \in e V} \exp \left(2 \pi i \beta\left(w, v_{e} v\right)\right) e_{w+(1-e) v}
\end{gathered}
$$

## Invariance of complete weight enumerators.

## Theorem.

Let $C \leq V^{N}$ be a self-dual isotropic code of Type $T$. Then cwe ${ }_{C}$ is invariant under $\mathcal{C}(T)$.

## Proof.

 Invariance under $m_{r}\left(r \in R^{*}\right)$ because $C$ is a code. Invariance under $d_{\phi}(\phi \in \Phi)$ because $C$ is isotropic. Invariance under $h_{e, u_{e}, v_{e}}$ because $C$ is self dual.The main theorem.(N,, Rains, Sloane (1999-2006))
If $R$ is a direct product of matrix rings over chain rings, then

$$
\left.\operatorname{Inv}(\mathcal{C}(T))=\left\langle\operatorname{cwe}_{C}\right| C \text { of Type } T\right\rangle
$$

## The Clifford-Weil groups for Type I and II.

Type I codes (2 $2_{\mathrm{I}}$ )

$$
\begin{aligned}
& R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x^{2}=\beta(x, x), 0\right\} \\
& \mathcal{C}(\mathrm{I})=\left\langle d_{\varphi}=\operatorname{diag}(1,-1), h_{1,1,1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)=h_{2}\right\rangle=G_{\mathrm{I}}
\end{aligned}
$$

## Type II codes ( $2_{\text {II }}$ ).

$$
\begin{gathered}
R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\phi: x \mapsto \frac{1}{4} x^{2}, 2 \phi=\varphi, 3 \phi, 0\right\} \\
\mathcal{C}(\mathrm{II})=\left\langle d_{\phi}=\operatorname{diag}(1, i), h_{2}\right\rangle=G_{\mathrm{II}}
\end{gathered}
$$

## The Clifford-Weil groups for Type III and IV.

## Type III codes (3).

$$
\begin{gathered}
R=\mathbb{F}_{3}=V, \beta(x, y)=\frac{1}{3} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{3} x^{2}=\beta(x, x), 2 \varphi, 0\right\} \\
\mathcal{C}(\mathrm{III})=\left\langle m_{2}=\left(\begin{array}{l}
100 \\
001 \\
010
\end{array}\right), d_{\varphi}=\operatorname{diag}\left(1, \zeta_{3}, \zeta_{3}\right), h_{1,1,1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta_{3} \zeta_{3}^{2} \\
1 \zeta_{3}^{2} \zeta_{3}
\end{array}\right)\right\rangle
\end{gathered}
$$

Type IV codes $\left(4^{H}\right)$.

$$
\begin{gathered}
R=\mathbb{F}_{4}=V, \beta(x, y)=\frac{1}{2} \operatorname{tr}(x \bar{y}), \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x \bar{x}, 0\right\} \\
\mathcal{C}(\mathrm{IV})=\left\langle m_{\omega}=\left(\begin{array}{l}
1000 \\
0001 \\
0100 \\
0010
\end{array}\right), d_{\varphi}=\operatorname{diag}(1,-1,-1,-1), h_{1,1,1}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1-1 \\
1-1 & -1 & 1
\end{array}\right)\right\rangle
\end{gathered}
$$

## Symmetrizations.

## Definition

Let $(R, J)$ be a ring with involution. Then the central unitary group is

$$
\mathrm{ZU}(R, J):=\left\{g \in Z(R) \mid g g^{J}=g^{J} g=1\right\}
$$

Theorem.
Let $T=(R, V, \beta, \Phi)$ be a Type and

$$
U:=\{u \in \mathrm{ZU}(R, J) \mid \phi(u v)=\phi(v) \text { for all } \phi \in \Phi, v \in V\} .
$$

Then $m(U):=\left\{m_{u} \mid u \in U\right\}$ is in the center of $\mathcal{C}(T)$.

## Example.

$R=\mathbb{F}_{2}$ or $R=\mathbb{F}_{3}$ then $\mathrm{ZU}(R, \mathrm{id})=R-\{0\}$.
If $R=\mathbb{F}_{4}$ then $\mathrm{ZU}(R, \mathrm{id})=\{1\}$, but $\mathrm{ZU}(R,-)=R-\{0\}$.

## Symmetrized Clifford-Weil groups.

## Definition.

Let $U \leq \mathrm{ZU}(R, J)$ and $X_{0}, \ldots, X_{n}$ be the $U$-orbits on $V$.
The $U$-symmetrized Clifford-Weil group is

$$
\mathcal{C}^{(U)}(T)=\left\{g^{(U)} \mid g \in \mathcal{C}(T)\right\} \leq \mathrm{GL}_{n+1}(\mathbb{C})
$$

If

$$
g\left(\frac{1}{\left|X_{i}\right|} \sum_{v \in X_{i}} e_{v}\right)=\sum_{j=0}^{n} a_{i j}\left(\frac{1}{\left|X_{j}\right|} \sum_{w \in X_{j}} e_{w}\right)
$$

then

$$
g^{(U)}\left(x_{i}\right)=\sum_{j=0}^{n} a_{i j} x_{j}
$$

## Remark.

The invariant ring of $\mathcal{C}^{(U)}(T)$ consists of the $U$-symmetrized invariants of $\mathcal{C}(T)$.

## Symmetrized weight enumerators.

## Definition.

Let $U$ permute the elements of $V$ and let $C \leq V^{N}$. Let $X_{0}, \ldots, X_{n}$ denote the orbits on $U$ on $V$ and for $c=\left(c_{1}, \ldots, c_{N}\right) \in C$ and $0 \leq j \leq n$ define

$$
a_{j}(c)=\mid\left\{1 \leq i \leq N \mid c_{i} \in X_{j}\right\}
$$

Then the $U$-symmetrized weight-enumerator of $C$ is

$$
\operatorname{cwe}_{C}^{(U)}=\sum_{c \in C} \prod_{j=0}^{n} x_{j}^{a_{j}(c)} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]
$$

## Remark.

If the invariant ring of $\mathcal{C}(T)$ is spanned by the complete weight enumerators of self-dual codes of Type $T$, then the invariant ring of $\mathcal{C}^{(U)}(T)$ is spanned by the $U$-symmetrized weight-enumerators of self-dual codes of Type $T$.

## Gleason's Theorem revisited.

## Remark

For Type I,II,III,IV the central unitary group $\mathrm{ZU}(R, J)$ is transitive on $V-\{0\}$, so there are only two orbits:

$$
x \leftrightarrow\{0\}, y \leftrightarrow V-\{0\}
$$

and the symmetrized weight enumerators are the Hamming weight enumerators.

$$
\mathcal{C}(\mathrm{III})=\left\langle m_{2}=\left(\begin{array}{l}
100 \\
001 \\
010
\end{array}\right), d_{\varphi}=\operatorname{diag}\left(1, \zeta_{3}, \zeta_{3}\right), h_{1,1,1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 \zeta_{3} \zeta_{3}^{2} \\
1 \zeta_{3}^{2} \zeta_{3}
\end{array}\right)\right\rangle
$$

yields the symmetrized Clifford-Weil group $G_{\text {III }}=\mathcal{C}^{(U)}($ III $)$

$$
\mathfrak{C}^{(U)}(\mathrm{III})=\left\langle m_{2}^{(U)}=I_{2}, d_{\varphi}^{(U)}=\operatorname{diag}\left(1, \zeta_{3}\right), h_{1,1,1}^{(U)}=h_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{rr}
1 & 2 \\
1-1
\end{array}\right)\right\rangle
$$

## The symmetrized Clifford-Weil group of Type IV.

$$
\mathcal{C}(\mathrm{IV})=\left\langle m_{\omega}=\left(\begin{array}{l}
1000 \\
0001 \\
0100 \\
0010
\end{array}\right), d_{\varphi}=\operatorname{diag}(1,-1,-1,-1), h_{1,1,1}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)\right\rangle
$$

yields the symmetrized Clifford-Weil group $G_{\text {IV }}=\mathcal{C}^{(U)}($ IV $)$

$$
\mathrm{C}^{(U)}(\mathrm{IV})=\left\langle m_{\omega}^{(U)}=I_{2}, d_{\varphi}^{(U)}=\operatorname{diag}(1,-1), h_{1,1,1}^{(U)}=h_{4}=\frac{1}{2}\left(\begin{array}{rr}
1 & 3 \\
1 & -1
\end{array}\right)\right\rangle
$$

## Hermitian codes over $\mathbb{F}_{9}$

$$
\left(9^{H}\right): R=V=\mathbb{F}_{9}, \beta(x, y)=\frac{1}{3} \operatorname{tr}(x \bar{y}), \Phi=\left\{\varphi: x \mapsto \frac{1}{3} x \bar{x}, 2 \varphi, 0\right\} .
$$

Let $\alpha$ be a primitive element of $\mathbb{F}_{9}$ and put $\zeta=\zeta_{3} \in \mathbb{C}$. Then with respect to the $\mathbb{C}$-basis

$$
\left(0,1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}, \alpha^{7}\right)
$$

of $\mathbb{C}[V]$, the associated Clifford-Weil group $\mathcal{C}\left(9^{H}\right)$ is generated by $d_{\varphi}:=\operatorname{diag}\left(1, \zeta, \zeta^{2}, \zeta, \zeta^{2}, \zeta, \zeta^{2}, \zeta, \zeta^{2}\right)$,

$$
m_{\alpha}:=\left(\begin{array}{l}
100000000 \\
000000001 \\
010000000 \\
001000000 \\
000100000 \\
000010000 \\
000001000 \\
000000100 \\
000000010
\end{array}\right), h:=\frac{1}{3}\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} 1\right.
$$

## Hermitian codes over $\mathbb{F}_{9}$

$\mathcal{C}\left(9^{H}\right)$ is a group of order 192 with Molien series

$$
\frac{\theta(t)}{\left(1-t^{2}\right)^{2}\left(1-t^{4}\right)^{2}\left(1-t^{6}\right)^{3}\left(1-t^{8}\right)\left(1-t^{12}\right)}
$$

where

$$
\begin{aligned}
\theta(t):=1 & +3 t^{4}+24 t^{6}+74 t^{8}+156 t^{10}+321 t^{12}+525 t^{14}+705 t^{16} \\
& +905 t^{18}+989 t^{20}+931 t^{22}+837 t^{24}+640 t^{26}+406 t^{28} \\
& +243 t^{30}+111 t^{32}+31 t^{34}+9 t^{36}+t^{38}
\end{aligned}
$$

So the invariant ring of $\mathcal{C}\left(9^{H}\right)$ has at least

$$
\theta(1)+9=6912+9=6921
$$

generators and the maximal degree (=length of the code) is 38. What about Hamming weight enumerators ?

## Hermitian codes over $\mathbb{F}_{9}$

$$
U:=\mathrm{ZU}\left(9^{H}\right)=\left\{x \in \mathbb{F}_{9}^{*} \mid x \bar{x}=x^{4}=1\right\}=\left(\mathbb{F}_{9}^{*}\right)^{2}
$$

has 3 orbits on $V=\mathbb{F}_{9}$ :

$$
\{0\}=X_{0},\left\{1, \alpha^{2}, \alpha^{4}, \alpha^{6}\right\}=: X_{1},\left\{\alpha, \alpha^{3}, \alpha^{5}, \alpha^{7}\right\}=: X_{2}
$$

$\mathcal{C}^{(U)}\left(9^{H}\right)=\left\langle d_{\varphi}^{(U)}:=\operatorname{diag}\left(1, \zeta, \zeta^{2}\right), m_{\alpha}^{(U)}:=\left(\begin{array}{c}100 \\ 001 \\ 010\end{array}\right), h^{(U)}:=\frac{1}{3}\left(\begin{array}{ccc}1 & 4 & 4 \\ 1 & 1-2 \\ 1-2 & 1\end{array}\right)\right\rangle$
of order $\frac{192}{4}=48$ of which the invariant ring is a polynomial ring spanned by the $U$-symmetrized weight enumerators

$$
\begin{aligned}
& q_{2}=x_{0}^{2}+8 x_{1} x_{2}, \quad q_{4}=x_{0}^{4}+16\left(x_{0} x_{1}^{3}+x_{0} x_{2}^{3}+3 x_{1}^{2} x_{2}^{2}\right) \\
& q_{6}=x_{0}^{6}+8\left(x_{0}^{3} x_{1}^{3}+x_{0}^{3} x_{2}^{3}+2 x_{1}^{6}+2 x_{2}^{6}\right) \\
& +72\left(x_{0}^{2} x_{1}^{2} x_{2}^{2}+2 x_{0} x_{1}^{4} x_{2}+2 x_{0} x_{1} x_{2}^{4}\right)+320 x_{1}^{3} x_{2}^{3}
\end{aligned}
$$

of the three codes with generator matrices

$$
\left[\begin{array}{ll}
1 & \alpha
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right],\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & \alpha & 2 \alpha & 0 & 1 & 2
\end{array}\right]
$$

## Hermitian codes over $\mathbb{F}_{9}$

Their Hamming weight enumerators are

$$
\begin{aligned}
& r_{2}=q_{2}(x, y, y) \quad:=x^{2}+8 y^{2}, \\
& r_{4}=q_{4}(x, y, y) \quad:=x^{4}+32 x y^{3}+48 y^{4}, \\
& r_{6}=q_{6}(x, y, y):=x^{6}+16 x^{3} y^{3}+72 x^{2} y^{4}+288 x y^{5}+352 y^{6} .
\end{aligned}
$$

The polynomials $r_{2}, r_{4}$ and $r_{6}$ generate the ring $\operatorname{Ham}\left(9^{H}\right)$ spanned by the Hamming weight enumerators of the codes of Type $9^{H}$. $\operatorname{Ham}\left(9^{H}\right)=\mathbb{C}\left[r_{2}, r_{4}\right] \oplus r_{6} \mathbb{C}\left[r_{2}, r_{4}\right]$ with the syzygy

$$
r_{6}^{2}=\frac{3}{4} r_{2}^{4} r_{4}-\frac{3}{2} r_{2}^{2} r_{4}^{2}-\frac{1}{4} r_{4}^{3}-r_{2}^{3} r_{6}+3 r_{2} r_{4} r_{6}
$$

Note that $\operatorname{Ham}\left(9^{H}\right)$ is not the invariant ring of a finite group.

