Character Tables of Parabolic

 Subgroups of

 Subgroups of}

Steinberg's Triality Groups

Frank Himstedt

Steinberg's triality groups ${ }^{3} D_{4}(q)$:

- For each $q=p^{n}, n \in \mathbb{N}_{\geq 1}, p$ prime, ${ }^{3} D_{4}(q)$ is a finite simple twisted Chevalley group of order

$$
\left|{ }^{3} D_{4}(q)\right|=q^{12}\left(q^{8}+q^{4}+1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)
$$

- Ordinary character table of ${ }^{3} D_{4}(q)$:
N. Spaltenstein (1982)
D.I. Deriziotis, G.O. Michler (1987)
- ℓ-modular decomposition matrices of ${ }^{3} D_{4}(q)$ for q odd, $\ell>2$ prime, $\ell \not \backslash q$: M. Geck (1991), up to a few numbers in the principal block
- Idea:

Ordinary and modular representation theory of parabolic subgroups of ${ }^{3} D_{4}(q)$ might help to determine the missing decomposition numbers
(inspired by T. Okuyama's and K. Waki's determination of the decomposition numbers of $\left.\mathrm{Sp}_{4}(q), 1998\right)$

- First Step:

Computation of the character tables of the parabolic subgroups of ${ }^{3} D_{4}(q)$

Parabolic subgroups of ${ }^{3} D_{4}(q): ~$

- Associated with each Chevalley group is a root system.
- Root System of ${ }^{3} D_{4}(q)$: Type G_{2}

Dynkin diagram:

- Associated with each subset of the set $\left\{{ }^{\alpha},{ }^{\beta} \cdot\right\}$ of nodes of the Dynkin diagram is a parabolic subgroup of ${ }^{3} D_{4}(q)$ (up to conjugacy)
$\left\{\stackrel{\alpha}{\bullet},{ }^{\beta}\right\}: \quad{ }^{3} D_{4}(q)$
$\{\stackrel{\alpha}{\bullet}\}$: max. parabolic subgroup P
$\left\{{ }^{\beta}\right\}$: max. parabolic subgroup Q
\emptyset : Borel subgroup B

Character tables of B, P, Q :

- for $p>2$: H. (2003)
(inspired by H. Enomoto's and H. Yamada's determination of the character tables of the parabolic subgroups of $G_{2}\left(2^{n}\right)$, 1986)

Computational tools:

- Programs based on CHEVIE for computing in groups of Lie type (C. Köhler, H.)
- MAPLE-programs based on CHEVIE for restriction and induction of characters between generic character tables.
- Library of generic character tables in CHEVIE : M. Geck, G. Hiss, F. Lübeck, G. Malle, J. Michel, G. Pfeiffer

From now on: $p>2$.

Character table of B :

- Conjugacy classes of B and their fusions in ${ }^{3} D_{4}(q)$: M. Geck (1991)
- Have constructed each $\chi \in \operatorname{Irr}(B)$ by inducing linear characters of subgroups of B
- B is an M-group

Character table of Q :

- Have computed the conjugacy classes of Q using the fusions of the classes of B in ${ }^{3} D_{4}(q)$

Construction of the irred. characters of Q :

(similar for P)

Methods:

1 Clifford theory applied to the Levi decomposition

$$
Q=L_{Q} \ltimes U_{Q}
$$

where $L_{Q} \cong \mathbb{Z}_{q^{3}-1} \ltimes S L_{2}(q)$ and $\left|U_{Q}\right|=q^{11}$

2 Decomposition of restrictions of unipotent characters of ${ }^{3} D_{4}(q)$ to Q into irreducible constituents

Inertia subgroups in Q

Q acts on $\operatorname{Irr}\left(U_{Q}\right)$ by conjugation.
There is a set of representatives $\left\{\psi_{0}, \ldots, \psi_{6}\right\}$ for the orbits of Q on $\operatorname{lrr}\left(U_{Q}\right)$ such that:

- ψ_{0} is the trivial character,
- ψ_{1}, ψ_{2} are linear characters,
- $\psi_{3}, \ldots, \psi_{6}$ have degree q^{3},
- for the inertia groups $I_{j}:=\operatorname{Stab}_{Q}\left(\psi_{j}\right)$ we have:

j	Structure of I_{j} / U_{Q}	I_{j}
0	L_{Q}	$=Q$
1	$\mathbb{Z}_{q-1} \ltimes\left(\mathbb{F}_{q},+\right)$	$\subseteq B$
2	$\{1\}$	$\subseteq B$
3	$S L_{2}(q)$	$\nsubseteq B$
4	$\mathbb{Z}_{q^{3}-1} \ltimes\left(\mathbb{F}_{q},+\right)$	$\subseteq B$
5	$\mathbb{Z}_{2} \ltimes\left(\mathbb{F}_{q},+\right)$	$\subseteq B$
6	$\mathbb{Z}_{2} \ltimes\left(\mathbb{F}_{q},+\right)$	$\subseteq B$

Construction of the irred. characters of Q :

- Construct the irreducible characters of Q not covering ψ_{0}, ψ_{3} by induction from B
- Get the irreducible characters of Q covering ψ_{0} by inflating the characters of L_{Q}
- Construct the remaining irreducible characters by decomposing restrictions of unipotent characters of ${ }^{3} D_{4}(q)$ to Q into irreducible constituents, orthogonality relations and products of characters

