Character Tables of Parabolic Subgroups of Steinberg's Triality Groups

Frank Himstedt

Steinberg's triality groups ${}^{3}D_{4}(q)$:

• For each $q = p^n$, $n \in \mathbb{N}_{\geq 1}$, p prime, ${}^3D_4(q)$ is a finite simple twisted Chevalley group of order

$$|{}^{3}D_{4}(q)| = q^{12}(q^{8} + q^{4} + 1)(q^{6} - 1)(q^{2} - 1)$$

- Ordinary character table of ³D₄(q):
 N. Spaltenstein (1982)
 D.I. Deriziotis, G.O. Michler (1987)
- ℓ-modular decomposition matrices of ³D₄(q) for q odd, ℓ > 2 prime, ℓ ∦ q :
 M. Geck (1991), up to a few numbers in the principal block

• Idea:

Ordinary and modular representation theory of parabolic subgroups of ${}^{3}D_{4}(q)$ might help to determine the missing decomposition numbers

(inspired by T. Okuyama's and K. Waki's determination of the decomposition numbers of $\mathrm{Sp}_4(q)$, 1998)

• First Step:

Computation of the character tables of the parabolic subgroups of $^3D_4(q)$

Parabolic subgroups of ${}^{3}D_{4}(q)$:

- Associated with each Chevalley group is a root system.
- Root System of ${}^{3}D_{4}(q)$: Type G_{2} Dynkin diagram: $\alpha \quad \beta$
- Associated with each subset of the set $\{\stackrel{\alpha}{\bullet}, \stackrel{\beta}{\bullet}\}$ of nodes of the Dynkin diagram is a parabolic subgroup of ${}^{3}D_{4}(q)$ (up to conjugacy)

$$\{ \stackrel{lpha}{ullet}, \stackrel{eta}{ullet} \}$$
: $^{3}D_{4}(q)$

- $\{\stackrel{\alpha}{\bullet}\}$: max. parabolic subgroup *P*
- $\{ \stackrel{\beta}{\bullet} \}$: max. parabolic subgroup Q
 - \emptyset : Borel subgroup B

Character tables of *B*, *P*, *Q*:

• for p > 2: H. (2003)

(inspired by H. Enomoto's and H. Yamada's determination of the character tables of the parabolic subgroups of $G_2(2^n)$, 1986)

Computational tools:

- Programs based on CHEVIE for computing in groups of Lie type (C. Köhler, H.)
- MAPLE-programs based on CHEVIE for restriction and induction of characters between generic character tables.
- Library of generic character tables in CHEVIE : M. Geck, G. Hiss, F. Lübeck, G. Malle, J. Michel, G. Pfeiffer

From now on: p > 2.

Character table of *B*:

- Conjugacy classes of *B* and their fusions in ³D₄(q):
 M. Geck (1991)
- Have constructed each $\chi \in Irr(B)$ by inducing linear characters of subgroups of B
- *B* is an *M*–group

Character table of Q:

• Have computed the conjugacy classes of Q using the fusions of the classes of B in ${}^{3}D_{4}(q)$

Construction of the irred. characters of Q:

(similar for *P*)

Methods:

1 Clifford theory applied to the Levi decomposition

 $Q = L_Q \ltimes U_Q$ where $L_Q \cong \mathbb{Z}_{q^3-1} \ltimes SL_2(q)$ and $|U_Q| = q^{11}$

2 Decomposition of restrictions of unipotent characters of ${}^{3}D_{4}(q)$ to Q into irreducible constituents

Inertia subgroups in \boldsymbol{Q}

Q acts on $Irr(U_Q)$ by conjugation.

There is a set of representatives $\{\psi_0, \ldots, \psi_6\}$ for the orbits of Q on $Irr(U_Q)$ such that:

- ψ_0 is the trivial character,
- ψ_1, ψ_2 are linear characters,
- ψ_3,\ldots,ψ_6 have degree q^3 ,
- for the inertia groups $I_j := \operatorname{Stab}_Q(\psi_j)$ we have:

j	Structure of I_j/U_Q	I_j
0	L_Q	= Q
1	$\mathbb{Z}_{q-1} \ltimes (\mathbb{F}_q, +)$	$\subseteq B$
2	{1}	$\subseteq B$
3	$SL_2(q)$	$\not\subseteq B$
4	$\mathbb{Z}_{q^3-1} \ltimes (\mathbb{F}_q, +)$	$\subseteq B$
5	$\mathbb{Z}_2 \ltimes (\mathbb{F}_q, +)$	$\subseteq B$
6	$\mathbb{Z}_2 \ltimes (\mathbb{F}_q, +)$	$\subseteq B$

Construction of the irred. characters of Q:

- Construct the irreducible characters of Q not covering ψ_0 , ψ_3 by induction from B
- Get the irreducible characters of Q covering ψ_0 by inflating the characters of L_Q
- Construct the remaining irreducible characters by decomposing restrictions of unipotent characters of ${}^{3}D_{4}(q)$ to Q into irreducible constituents, orthogonality relations and products of characters