
Computing Invariants of Multidimensional Linear Systems on an
Abstract Homological Level

Mohamed Barakat and Daniel Robertz

Abstract— Methods from homological algebra [16] play a
more and more important role in the study of multidimen-
sional linear systems [15], [14], [6]. The use of modules allows
an algebraic treatment of linear systems which is independent
of their presentations by systems of equations. The type of
linear system (ordinary/partial differential equations, time-
delay systems, discrete systems. . .) is encoded in the (non-
commutative) ring of (differential, shift, . . .) operators over
which the modules are defined. In this framework, homo-
logical algebra gives very general information about the
structural properties of linear systems.

Homological algebra is a natural extension of the theory
of modules over rings. The category of modules and their ho-
momorphisms is replaced by the category of chain complexes
and their chain maps. A module is represented by any of its
resolutions. The module is then recovered as the only non-
trivial homology of the resolution. The notions of derived
functors and their homologies, connecting homomorphism
and the resulting long exact homology sequences play a
central role in homological algebra.

The MAPLE-package homalg [1], [2] provides a way to
deal with these powerful notions. The package is abstract
in the sense that it is independent of any specific ring
arithmetic. If one specifies a ring in which one can solve the
ideal membership problem and compute syzygies, the above
homological algebra constructions over that ring become
accessible usinghomalg .

In this paper we introduce the package homalg and
present several applications ofhomalg to the study of multi-
dimensional linear systems using availableMAPLE-packages
which provide the ring arithmetics, e.g. OREMODULES [4],
[5] and JANET [3], [13].

Keywords— Homological algebra, multidimensional linear
systems,SMITH normal form, JACOBSON normal form, ex-
tension modules, computer algebra.

I. INTRODUCTION

In linear control theory it became more and more evident
that properties of the system are encoded by its intrinsic
nature as a module over a certain ring of operators, rather
than its specific realization as system of equations. The
theory that deals with these intrinsic properties is the
general theory of modules over rings and the homological
algebra of the category of such modules. As the name
of this package suggests, our intention has been to make
as much as possible of the basic homological machinery
available in a computer algebra system without the need
to specify the ring of operators from the beginning.

M. Barakat and D. Robertz, RWTH – Aachen, Templergraben 64,
52056 Aachen, Germany,mohamed.barakat@rwth-aachen.de ,
daniel@momo.math.rwth-aachen.de.

II. THE PHILOSOPHY OF THE PACKAGE

The basic objects ofhomalg are finitely presented left
modules over rings in which the ideal membership problem
is algorithmically solvable and syzygies are effectively
computable. We call such ringscomputable. homalg im-
plements the homological constructions for modules over
such rings, whereas the ring arithmetic has to be provided
by a ring-specific package. The following ring-specific
packages have successfully been used withhomalg : IN-
VOLUTIVE and JANET [3], OREMODULES [4]. PIR is one
more tiny package, or rather a pseudo-package, that makes
MAPLE’s builtin facilities for dealing with integers and
some other principal ideal rings available tohomalg . The
packagePIR uses the SMITH normal form to provide a
standard form for the presentation of a module.

The central objects inhomalg are functors. Functors
map on the one hand objects of a source category to objects
of a target category, and on the other hand morphisms
between two objects in the source category to morphisms
between their images in the target category in a compatible
way. The two most important functors are theHom-functor
and the tensor product functor⊗ and their derived functors,
the definition of which will be reproduced below.

A major effort in the implementation was to find the
suitable scheme for realizing the functor part on objects
in order to have a unified way in extracting the part
of the functor on morphisms. Composition and deriva-
tion of functors inhomalg rely exclusively on this and
define again functors. I.e. extracting the morphism part
of composed or derived functors is done in the same
unified way as for all functors. Hence, using the two
basic operations of composing and deriving functors, the
user can without effort add new functors to those already
existing inhomalg .

Given a (covariant) functorF the i-th left derivation of
F is as usual denoted byLiF . A short exact sequence
0 → M ′ → M → M ′′ → 0 of modules then gives
rise to a long exact sequence connectingLiF (M ′) →
LiF (M) → LiF (M ′′) andLi+1F (M ′) → Li+1F (M) →
Li+1F (M ′′) for all i ≥ 0. These so-called connecting
homomorphisms are implemented inhomalg .

Some natural transformations between functors are also
implemented inhomalg . The most prominent are the
embedding of a kernel in the source of a map and the
natural epimorphism from the target of a map onto its
cokernel.

In homalg one finds procedures to compute homologies

of complexes (especially to test exactness of complexes),
to check commutativity of diagrams, to check surjectivity
or injectivity of maps, etc.

One major restriction inhomalg is that one cannot
change the base ring. All functors are hence functors where
the source and target category are defined over the same
ring.

III. FINITELY PRESENTED MODULES

homalg can only deal with finitely presented modules.
A finitely presented moduleM over a ringD is a quotient
of a free module of finite rankD1×l0 by a finitely gener-
ated submoduleD1×l1A = im(.A), whereA ∈ Dl1×l0 :

M = D1×l0/D1×l1A = coker(.A).

As usual a presentation is given by generators and
relations. A presentation of a module inhomalg is a
list containing as first entry the list of generators and as
second entry the list of relations. The third entry is a
string delimiter to optically indicate the end of the presen-
tation. This string, unless changed by the user, defaults to
"Presentation" . The remaining entries provide extra
information about the presented module, e.g. its HILBERT

series. This extra information can only be provided by the
ring-specific package.

In the list of generators the concrete generators are
numbered by abstract generators being thel0 standard basis
vectors of the underlying free moduleD1×l0 . The list of
relations simply contains the rows of the matrixA. An
example is given in Fig. III.

IV. FUNCTORS

Here we define the basic functors implemented in
homalg . We restrict ourselves to describe only those func-
tors with the source category also being the category of left
D-modules. Nevertheless functors like the kernel functor
ker, the cokernel functorcoker, the pullback functor and
the defect of homomorphisms functor are implemented.
The objects of their source categories are not merely
modules but themselves morphisms between modules. In
homalg the object and morphism part of a functor are
two different procedures. If the object part has the name
F then the morphism part isFMap.

Let D be a computable ring, as defined above.

A. The functorT

Over an ORE-domainD the set of all torsion elements
of a left D-moduleM forms a submoduleTM called
the torsion submodule ofM . Taking the torsion sub-
module is functorial, i.e. everyD-module homomorphism
M

α−→ N induces by restriction again a homomorphism

TM
Tα:=α|T M−−−−−−−→ TN . More precisely,T is a covariant

functor from the category of leftD-modules to itself.

B. TheHom-functor

For two leftD-modulesM andL denote byHom(M,L)
the abelian group of allD-module homomorphisms from
M to N . For aD-module homomorphismM

α−→ N let
Hom(α,L) : Hom(N,L) → Hom(M,L) : ψ 7→ ψ ◦ α.
Thus, Hom(−, L) is a contravariant functor from the
category ofD-modules to the category of abelian groups.

For this functor to comply with the above mentioned
restriction certain properties of the ringD are required.
Either D is commutative, orL = D, in which case the
ringD should come with a fixed involution, i.e. self-inverse
anti-automorphismθ : D → D. θ allows one to transform
a right module structure to a left module structure again. If
this is provided, thenHom(−, L) is a contravariant functor
from the category of leftD-modules to itself.

C. The tensor product functor⊗
For a left resp. rightD-moduleM resp.L denote by

M⊗L the tensor product overD of M andL, which is an
abelian group. For aD-module homomorphismM

α−→ N
let α⊗L : M ⊗L→ N ⊗L : ϕ 7→ ϕ⊗ IdL. Thus−⊗L
is a covariant functor from the category ofD-modules to
the category of abelian groups.

Again, for this functor to comply with the above men-
tioned restriction we always assumeD to be commutative
(note that− ⊗D is equivalent to the identity functor). If
this is provided, then− ⊗ L is a covariant functor from
the category ofD-modules to itself.

D. Derivations

We define the left (resp. right) derived functor of a
covariant (resp. contravariant) functorF using projective
resolutions: For aD-module M compute a projective
resolutionP

· · · → Pi+1 → Pi → Pi−1 → · · · → P1 → P0
︸ ︷︷ ︸

=:P

→M → 0

of M . Define fori ≥ 0 the left (resp. right) derived functor
LiF (resp. RiF) of the covariant (resp. contravariant)
functorF by taking the homology (resp. cohomology) of
the complex (resp. cocomplex)F (P) at the i-th position
[10].

The most prominent left derived functor of a covariant
functor isTori(−, L) (i ≥ 0). Since−⊗L is right exact,
the two functors−⊗ L andTor0(−, L) are equivalent.

The most prominent right derived functor of a con-
travariant functor isExti(−, L) (i ≥ 0). SinceHom(−, L)
is left exact, the two functorsHom(−, L) andExt0(−, L)
are equivalent. TheExt-functor has up to our knowledge
simply more applications in systems theory than theTor-
functor.

Since we cannot compute injective resolutions, we are
not able to implement right (resp. left) derived functors of
a covariant (resp. contravariant) functor.

From the point of view of derived categories, a module
M should be replaced by any of its resolutions, which
is a complex, sayP . All the resolutions of the module

[

[[1, 0, 0] =

[
0 y 0

0 −y 0

]

, [0, 1, 0] =

[
1 0 0

0 1 0

]

, [0, 0, 1] =

[
0 0 −y

0 0 x

]

],

[[x− y, 0, 0], [y, xy, 0], [0, 0, z3]],

“Presentation”,

generators 3 + 8 s+ 14 s2 + s3
(

14
(1−s) + 6

(1−s)2

)

,

relations [14, 6, 0]

]

HILBERT series

CARTAN characters

Fig. 1. A module of homomorphisms between two modules overD = Q[x, y, z] with INVOLUTIVE

are homotopy equivalent. The complexP is exact in all
degrees except for degree0 and the moduleM is recovered
as the only non-trivial homology ofP at degree0. In gen-
eral two complexes are identified in the derived category if
there exists a chain of quasi-isomorphisms, i.e. chain maps
inducing isomorphism on homology, connecting the one
complex with the other. Homotopy equivalences are special
cases of quasi-isomorphisms. So we obtain the derived
category by inverting quasi-isomorphisms. The connecting
homomorphisms lead to the so-called exact triangles in the
derived category of the category of finitely presentedD-
modules, which is simply the way to look at long exact
sequences in the realm of triangulated categories.

V. AN EXAMPLE OVER THE GAUSSIAN
INTEGERS

Here we takeD = Z[
√
−1], which is a EUCLIDEAN

domain, which is not a field, and hence has global dimen-
sion1. In the following exampleM andN will be finitely
generatedD-modules. ForM we consider

M
ε→M∗∗,

whereM∗∗ := Hom(Hom(M,D),D) andε is the evalu-
ation map. We also consider the short exact sequence

0 → TM
ι→M

ν→M/TM → 0,

whereι is the embedding andν is the natural epimorphism.
The last sequence induces via the contravariant functor
Hom(−, N) the sequence

0 → Hom(M/TM,N)
Hom(ν,N)−−−−−−→ Hom(M,N)

η := Hom(ι,N)−−−−−−−−−−→ Hom(TM,N) → 0.

This sequence is again exact, sinceM/TM over the
principal ideal domainD is free andExt1(M/TM,N)
vanishes. We start with the diagram in Fig. V, where
we only indicate the arrows we need. The middle square
in the bottom row is specified in Fig. V. We assume
that a, b, c, d ∈ D satisfy ab = c for the square to be
commutative.A′ ∼= Hom(M/TM,N) ⊕ TM resp.B′

is defined as the kernel ofα2 resp. β2, and τ is the
map induced byψ between the kernels. The two middle

columnsA′ α1−→ A
α2−→ A′′ and B′ β1−→ B

β2−→ B′′

regarded as chain complexes and(τ, ψ, φ) as a chain map
induce a kernel sequenceK ′ κ1−→ K

κ2−→ K ′′ and a
cokernel sequenceC ′ ω1−→ C

ω2−→ C ′′. Since, as seen
above,α2 is surjective andβ1 is injective by definition,
there exists a connecting homomorphismδ connecting the
kernel and the cokernel sequence to a long exact sequence:

K ′ κ1−→ K
κ2−→ K ′′ δ−→ C ′ ω1−→ C

ω2−→ C ′′.

0

��

0 C ′oo

ω1

��

B′oo

β1

��

A′τoo

α1

��

K ′oo

κ1

��

0oo

0 Coo

ω2

��

Boo

β2

��

A
ψ

oo

α2

��

Koo

κ2

��

0oo

0 C ′′oo B′′oo A′′
φ

oo

��

K ′′oo 0oo

0

Fig. 2. Diagram for the example in Section V

B

β2

��

A
ψ

oo

α2

��

B′′ A′′
φ

oo

=

Hom(TM,N) ⊕M∗∗

b Id ⊕ 0

��

Hom(M,N) ⊕M
a η⊕ d ε

oo

η⊕ ν

��

Hom(TM,N) ⊕ 0 Hom(TM,N) ⊕M/TM
c Id ⊕ 0

oo

Fig. 3. Middle square in the bottom row of the diagram in Fig. V

> restart;

The packagePIR enables one to work over severalMAPLE-builtin principal ideal rings:

> with(homalg): with(PIR):

> RPP:=‘PIR/homalg‘;

RPP := PIR/homalg

Since we won’t change the base ring during the computation wefix it once and for all:

> ‘homalg/default‘:=RPP;

homalg/default := PIR/homalg

SpecifyD = Z[
√
−1], the ring of GAUSSIAN integers:

> var:=[I];

var := [I]

> Pvar(var);

[“Z[I]”]

Define the four variables withc = a b:

> a:=1+I; b:=5; c:=a * b; d:=2 * (1+I);
a := 1 + I

b := 5

c := 5 + 5 I

d := 2 + 2 I

Define theD-moduleM :

> M:=Cokernel([[1,2,4,6],[6 * (1+I) * 1,6 * (1+I) * 3,6 * (1+I) * 4,6 * (1+I) * 5]],var);

M := [[[1, 0, 0] = [0, 1, 0, −1], [0, 1, 0] = [0, 0, 1, 0], [0, 0, 1] = [0, 0, 0, 1]],

[[6 + 6 I, 0, 0]], “Presentation”, [6 + 6 I, 0, 0], 2]

The torsion submoduleTM :

> TM:=TorsionSubmodule(M,var);

TM := [[1 = [0, 1, 0, −1]], [6 + 6 I], “Presentation”, [6 + 6 I], 0]

The embedding mapι:

> iota:=TorsionSubmoduleEmb(M,var);

ι :=
[

1 0 0
]

The torsion free partFM := M/TM :

> FM:=Cokernel(iota,M,var);

FM := [[[1, 0] = [0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation”, [0, 0], 2]

The natural epimorphismM →M/TM :

> nu:=CokernelEpi(iota,M,var);

ν :=

0 0
1 0
0 1

The double dualM∗∗:

> HHM:=HomHom_R(M,var);

HHM := [[[1, 0] =

[
1
0

]

, [0, 1] =

[
0
1

]

], [[0, 0]], “Presentation”, [0, 0], 2]

The evaluation mapM →M∗∗:

> epsilon:=NatTrIdToHomHom_R(M,var);

ε :=

0 0
1 0
0 1

TheD-moduleN :

> N:=Cokernel([[1,2,4,0],[2 * (1-I) * 1,2 * (1-I) * 3,2 * (1-I) * 4,0],[0,0,0,2]],var);

N := [[[1, 0, 0] = [0, 0, 0, 1], [0, 1, 0] = [0, −1, 0, 1], [0, 0, 1] = [0, 0, 1, 0]],

[[2, 0, 0], [0, 2 + 2 I, 0]], “Presentation”, [2, 2 + 2 I, 0], 1]

The module of homomorphismsHom(M,N):

> HMN:=Hom(M,N,var);

HMN :=

[[

[1, 0, 0, 0, 0, 0, 0, 0] =

0 0 0
0 0 0
1 0 0

 , [0, 1, 0, 0, 0, 0, 0, 0] =

0 0 0
−1 0 0

1 0 0

 ,

[0, 0, 1, 0, 0, 0, 0, 0] =

1 0 0
−2 0 0

1 0 0

 , [0, 0, 0, 1, 0, 0, 0, 0] =

−1 0 0
3 0 0

−3 1 0

 ,

[0, 0, 0, 0, 1, 0, 0, 0] =

−1 0 0
3 1 0

−4 1 0

 , [0, 0, 0, 0, 0, 1, 0, 0] =

0 1 0
0 3 0

−5 1 0

 ,

[0, 0, 0, 0, 0, 0, 1, 0] =

0 0 0
0 0 1
0 0 0

 , [0, 0, 0, 0, 0, 0, 0, 1] =

0 0 0
0 0 0
0 0 1

]

,

[[2, 0, 0, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0, 0],

[0, 0, 0, 2 + 2 I, 0, 0, 0, 0], [0, 0, 0, 0, 2 + 2 I, 0, 0, 0], [0, 0, 0, 0, 0, 2 + 2 I, 0, 0]],

“Presentation”, [2, 2, 2, 2 + 2 I, 2 + 2 I, 2 + 2 I, 0, 0], 2

]

The module of homomorphismsHom(TM,N):

> HTMN:=Hom(TM,N,var);

HTMN := [[[1, 0] =
[

1 0 0
]
, [0, 1] =

[
−1 1 0

]
], [[2, 0], [0, 2 + 2 I]], “Presentation”, [2, 2 + 2 I], 0]

The identity map ofHom(TM,N):

> Id:=IdentityMap(HTMN,var);

Id :=

[
1 0
0 1

]

The induced mapη := Hom(ι,N):

> eta:=HomMap(TM,iota,M,N,var);

η :=

0 0
0 0
1 0

−1 0
−1 0

1 1
0 0
0 0

The zero module:

> Z:=ZeroModule(var);

Z := [[1 = 0], [1], “Presentation”, [1], 0]

The zero map fromM/TM to the zero module:

> zeta:=ZeroMap(FM,Z,var);

ζ :=

[
0
0

]

The zero map fromM∗∗ to the zero module:

> chi:=ZeroMap(HHM,Z,var);

χ :=

[
0
0

]

A is the direct sum ofHom(M,N) andM :

> A:=DirectSum(HMN,M,var);

A := [[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] = [0, −1, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] = [1, −2, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] = [−1, 3, −3, 0, 0, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] = [0, 0, 0, 0, −1, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] = [0, 0, 0, 1, −2, 1, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] = [0, 0, 0, −1, 3, −3, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], [

[2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 2 + 2 I, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 2 + 2 I, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2 + 2 I, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 6 + 6 I, 0, 0, 0, 0]], “Presentation”,

[2, 2, 2, 2 + 2 I, 2 + 2 I, 2 + 2 I, 6 + 6 I, 0, 0, 0, 0], 4]

A′′ is the direct sum ofHom(TM,N) andM/TM :

> _A:=DirectSum(HTMN,FM,var);

A := [[[1, 0, 0, 0] = [1, 0, 0, 0], [0, 1, 0, 0] = [−1, 1, 0, 0], [0, 0, 1, 0] = [0, 0, 1, 0],

[0, 0, 0, 1] = [0, 0, 0, 1]], [[2, 0, 0, 0], [0, 2 + 2 I, 0, 0]], “Presentation”, [2, 2 + 2 I, 0, 0], 2]

α2 is the direct sum of the mapsη andν:

> alpha2:=DirectSumMap(HMN,M,eta,nu,HTMN,FM,var);

α2 :=

1 0 0 0
1 0 0 0
1 0 0 0

−1 1 0 0
1 1 0 0
1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

A′ is the kernel ofα2:

> A_:=Kernel(A,alpha2,_A,var);

A := [[[1, 0, 0, 0, 0, 0, 0] = [−1, 2, −2 − 2 I, 2 + 2 I, −4 − 4 I, 2 + 2 I, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0] = [−3, 5, −2 − 2 I, 2 + 2 I, −4 − 4 I, 2 + 2 I, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0] = [5, −10, 8 + 4 I, −9 − 4 I, 21 + 8 I, −16 − 4 I, 0, 0, 3, 0, 0],

[0, 0, 0, 1, 0, 0, 0] = [1, −3, 4, −4, 12, −12, 0, 0, 3, 0, 0],

[0, 0, 0, 0, 1, 0, 0] = [−3, 9, −11, 12, −33, 32, 0, 0, −8, 0, 0],

[0, 0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]], [[2, 0, 0, 0, 0, 0, 0],

[0, 2, 0, 0, 0, 0, 0], [0, 0, 2 + 2 I, 0, 0, 0, 0], [0, 0, 0, 2 + 2 I, 0, 0, 0],

[0, 0, 0, 0, 6 + 6 I, 0, 0]], “Presentation”, [2, 2, 2 + 2 I, 2 + 2 I, 6 + 6 I, 0, 0], 2]

α1 is the embedding map:

> alpha1:=KernelEmb(A,alpha2,_A,var);

α1 :=

−1 − 2 I 0 −1 0 0 2 + 2 I 0 0 0 0 0
−2 I 1 −3 0 0 2 + 2 I 0 0 0 0 0

2 + 4 I −1 4 −1 0 −6 − 4 I 3 0 0 0 0
1 0 0 −1 −1 −1 3 0 0 0 0
−2 0 0 3 1 4 −8 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0

TheA-sequence is exact:

> IsShortExactSeq(A_,alpha1,A,alpha2,_A,var,"VERBOSE");
true

B is the direct sum ofHom(TM,N) andM∗∗:

> B:=DirectSum(HTMN,HHM,var);

B := [[[1, 0, 0, 0] = [1, 0, 0, 0], [0, 1, 0, 0] = [−1, 1, 0, 0], [0, 0, 1, 0] = [0, 0, 1, 0],

[0, 0, 0, 1] = [0, 0, 0, 1]], [[2, 0, 0, 0], [0, 2 + 2 I, 0, 0]], “Presentation”, [2, 2 + 2 I, 0, 0], 2]

B′′ is the direct sum ofHom(TM,N) and the zero module:

> _B:=DirectSum(HTMN,Z,var);

B := [[[1, 0] = [−1, 0, 1], [0, 1] = [0, −1, 1]], [[2, 0], [0, 2 + 2 I]], “Presentation”, [2, 2 + 2 I], 0]

β2 is the direct sum of the mapb Id and the zero mapχ:

> beta2:=DirectSumMap(HTMN,HHM,MulMat(b,Id,var),chi,H TMN,Z,var);

β2 :=

−1 0
1 −1
0 0
0 0

B′ is the kernel ofβ2:

> B_:=Kernel(B,beta2,_B,var);

B := [[[1, 0] = [0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation”, [0, 0], 2]

β1 is the embedding map:

> beta1:=KernelEmb(B,beta2,_B,var);

β1 :=

[
0 0 1 0
0 0 0 1

]

TheB-sequence is in this example (depending on the choice of the numberb) exact:

> IsShortExactSeq(B_,beta1,B,beta2,_B,var,"VERBOSE");
true

ψ is the direct sum of the mapsa η andd ε:

> psi:=DirectSumMap(HMN,M,MulMat(a,eta,var),MulMat(d, epsilon,var),HTMN,
> HHM,var);

ψ :=

1 + I 0 0 0
1 + I 0 0 0
1 + I 0 0 0
−1 − I 1 + I 0 0
1 + I 1 + I 0 0
1 + I 1 + I 0 0

0 −1 − I 0 0
0 0 0 0
0 0 0 0
0 0 2 + 2 I 0
0 0 0 2 + 2 I

Some infos aboutψ:

> IsHom(A,psi,B,var);
true

> IsSurjective(psi,B,var);

false

> IsInjective(A,psi,B,var);

false

A necessary condition to be able to complete the square:

> CheckKerSq(A,alpha2,_A,psi,B,beta2,_B,var);

[%1, %1, %1, %1, %1, %1, %1]

%1 := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Completing the square byφ, which is the direct sum of the mapc Id and the zero mapζ:

> phi:=DirectSumMap(HTMN,FM,MulMat(c,Id,var),zeta,HTM N,Z,var);

φ :=

−1 − I 0
1 + I −1 − I

0 0
0 0

Some infos aboutφ:

> IsHom(_A,phi,_B,var);
true

> IsSurjective(phi,_B,var);

false

> IsInjective(_A,phi,_B,var);

false

Check the commutativity of the square:

> IsCommutativeSq(alpha2,phi,psi,beta2,_B,var);
true

The induced kernel mapτ :

> tau:=KernelMap(A,alpha2,_A,psi,B,beta2,_B,var);

τ :=

0 0
0 0
0 0
0 0
0 0
0 0
0 0

Some infos aboutτ :

> IsHom(A_,tau,B_,var);
true

> IsSurjective(tau,B_,var);

false

> IsInjective(A_,tau,B_,var);

false

Check the commutativity of the square:

> IsCommutativeSq(alpha1,psi,tau,beta1,B,var);
true

Compute the kernel sequence:

> K:=Kernel(A,psi,B,var);

K := [[[1, 0, 0, 0, 0, 0, 0, 0, 0] = [0, 0, 2, −2, 4, −2, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0] = [−1 − I, 2 + 2 I, 1 − I, −2, 4, −2, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0] = [−1, 2, 2, −2, 4, −2, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0, 0] = [−3, 5, 2, −2, 4, −2, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 0] = [0, 0, 2, −1, 3, −2, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 1, 0, 0, 0] = [−1, 3, −1, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1, 0, 0] = [6 + I, −12 − 2 I, −7 + I, 8, −20, 12, 0, 0, −1, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]], [

[1 + I, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1 + I, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2 + 2 I, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2 + 2 I, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 6 + 6 I, 0, 0]], “Presentation”,

[1 + I, 1 + I, 2, 2, 2 + 2 I, 2 + 2 I, 6 + 6 I, 0, 0], 2]

> K_:=Kernel(A_,tau,B_,var);

K := [[[1, 0, 0, 0, 0, 0, 0] = [−3, 5, −2 − 2 I, 2 + 2 I, −4 − 4 I, 2 + 2 I, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0] = [−2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0] = [6, −11, 6 + 2 I, −6 − 2 I, 16 + 4 I, −14 − 2 I, 0, 0, 3, 0, 0],

[0, 0, 0, 1, 0, 0, 0] = [−4, 7, −4 − 4 I, 5 + 4 I, −9 − 8 I, 4 + 4 I, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0] = [0, 5, −11 + 4 I, 11 − 4 I, −36 + 8 I, 40 − 4 I, 0, 0, −11, 0, 0],

[0, 0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]], [[2, 0, 0, 0, 0, 0, 0],

[0, 2, 0, 0, 0, 0, 0], [0, 0, 2 + 2 I, 0, 0, 0, 0], [0, 0, 0, 2 + 2 I, 0, 0, 0],

[0, 0, 0, 0, 6 + 6 I, 0, 0]], “Presentation”, [2, 2, 2 + 2 I, 2 + 2 I, 6 + 6 I, 0, 0], 2]

> kappa1:=KernelMap(A_,tau,B_,alpha1,A,psi,B,var);

κ1 :=

−1 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 I 0 1 0 0 −3 0 0

−1 0 −1 1 1 0 0 0 0
1 −1 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

> _K:=Kernel(_A,phi,_B,var,"var_to_assign_embedding_i nfo"=’_KK’);

K := [[[1, 0, 0, 0] = [−2, 2, 0, 0], [0, 1, 0, 0] = [−3 − I, 2, 0, 0], [0, 0, 1, 0] = [0, 0, 1, 0],

[0, 0, 0, 1] = [0, 0, 0, 1]], [[1 + I, 0, 0, 0], [0, 1 + I, 0, 0]], “Presentation”, [1 + I, 1 + I, 0, 0], 2]

> copy(_KK);

0 2 0 0
−1 − I 2 0 0

0 0 1 0
0 0 0 1

> kappa2:=KernelMap(A,psi,B,alpha2,_A,phi,_B,var);

κ2 :=

−1 0 0 0
0 1 0 0

−1 0 0 0
−1 0 0 0
−1 0 0 0

0 0 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

The kernel sequence has a non-zero cokernel atK ′′:

> IsShortExactSeq(K_,kappa1,K,kappa2,_K,var,"VERBOSE");

“homs” = true, “cmps” = true, “defs” = [true, true,

[[[1, 0] = [0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation”, [0, 0], 2]]

Define the cokernel sequence:

> C:=Cokernel(psi,B,var);

C := [[[1, 0, 0, 0] = [−1, 1, 0, 0], [0, 1, 0, 0] = [−2, 1, 0, 0], [0, 0, 1, 0] = [3, −2, 0, 1],

[0, 0, 0, 1] = [0, 0, −1, 1]], [[1 + I, 0, 0, 0], [0, 1 + I, 0, 0], [0, 0, 2 + 2 I, 0], [0, 0, 0, 2 + 2 I]],

“Presentation”, [1 + I, 1 + I, 2 + 2 I, 2 + 2 I], 0]

> C_:=Cokernel(tau,B_,var,"var_to_assign_embedding_in fo"=’CC_’);

C := [[[1, 0] = [0, 0, 1, 0], [0, 1] = [0, 0, 0, 1]], [[0, 0]], “Presentation”, [0, 0], 2]

> copy(CC_);
[

1 0
0 1

]

> omega1:=CokernelMap(tau,B_,beta1,psi,B,var);

ω1 :=

[
1 1 1 −1
1 1 1 0

]

> _C:=Cokernel(phi,_B,var);

C := [[[1, 0] = [0, −1, 1], [0, 1] = [1, −1, 0]], [[1 + I, 0], [0, 1 + I]], “Presentation”, [1 + I, 1 + I], 0]

> omega2:=CokernelMap(psi,B,beta2,phi,_B,var);

ω2 :=

0 −1
1 0

−1 1
0 0

The cokernel sequence has a non-zero kernel atC ′:

> IsShortExactSeq(C_,omega1,C,omega2,_C,var,"VERBOSE");

“homs” = true, “cmps” = true, “defs” = [[[[1, 0] = [0, 0, 2 + 2 I, 0], [0, 1] = [0, 0, 0, 2 + 2 I]],

[[0, 0]], “Presentation”, [0, 0], 2], true, true]

Compute the connecting homomorphism between the kernel andthe cokernel sequence:

> delta:=ConnectingHom(_K,alpha2,psi,tau,beta1,C_,var ,
> "Hqn_embedding_info"=_KK,"Hsn_1_embedding_info"=CC_ ,
> "Cqn_Bqn"=_A,"Zn_1"=B,"Zsn_1"=B_);

δ :=

0 0
0 0

2 + 2 I 0
0 2 + 2 I

The resulting sequence is a long exact sequence:

> IsExactCoseq([K_,kappa1,K,kappa2,_K,delta,C_,omega1 ,C,omega2,_C],var,
> "VERBOSE");

true

VI. SYSTEM-THEORETIC INTERPRETATION OF
HOMOLOGICAL CONSTRUCTIONS

For a finitely presented moduleM with relation ma-
trix A denote byM⊤ the module with relation matrix
θ(A) defined by (θ(A))ij = θ(Aji), where θ is the
fixed involution coming with the ring. Of courseM⊤

and Ext0(M⊤,D) depend on the presentation ofM .
NeverthelessExti(M⊤,D) for i > 0 only depends on
the isomorphism type ofM . For instance

Ext1(M⊤,D) ∼= TM, (1)

a fact that is often demonstrated in the following examples.
Since one has the exact sequence

0 → Ext1(M⊤,D) →M
ε→M∗∗ → Ext2(M⊤,D) → 0,

the moduleM is reflexive, iff Exti(M⊤,D) = 0 for i =
1, 2. FurthermoreM is projective, iffExti(M,D) = 0 for
all 0 < i ≤ n, wheren is the global dimension (possibly
infinite) of D. This is summarized in Table I (for more
details see [15], [6]).

An immediate application of the homological machinery,
is that all the homological constructions depend only on the
isomorphism type of the module, i.e. on the intrinsic struc-
tural properties of the system (independent of the specific
realization). By this, one can interpret these constructions
as invariants, and one can distinguish between intrinsically
different systems by finding a differing homological prop-
erty.

VII. APPLICATIONS

A. A bipendulum

In this subsection we demonstrate methods for the
study of structural properties of linear systems of ordinary
differential equations with rational coefficients, i.e. systems
defined over the Weyl algebra of differential operators with
respect to timet with rational functions int as coefficients.
We consider the example of a mechanical system called
bipendulum which consists of two pendula of lengthl1

respectivelyl2 , fixed at the two ends of a bar [14]. The
bar can be moved horizontally.

We load the packagehomalg and the ring-specific
package JANET providing procedures for the algebraic
analysis of linear systems of partial differential equations.

> with(Janet):

> with(homalg):

First we define the list of independent variables defining
the noncommutative ringQ(t)[d

dt
] and then the list of de-

pendent variables which are the generators of theQ(t)[d
dt

]-
module corresponding to the linear system:

> ivar:=[t];dvar:=[x1,x2,x1t,x2t,u];

ivar := [t]

dvar := [x1 , x2 , x1t , x2t , u]

’Janet1’ indicates that the package JANET will be used
with one independent variable only.homalg will then use
the JACOBSON normal form [7] for ordinary differential
operators with rational coefficients to generate the best
basis for a module. This demonstrates how the flexibility of
homalg can be exploited by using different ring-specific
features.

> RPJ:=‘Janet/homalg‘;

RPJ := Janet/homalg

> RPJ1:=‘Janet1/homalg‘;

RPJ1 := Janet1/homalg

The system of the bipendulum is described by equating
the following system of ordinary differential expressions
to 0:

> R:=[diff(x1(t),t)-x1t(t),
> diff(x2(t),t)-x2t(t), g/l1 * x1(t)+
> diff(x1t(t),t)+g/l1 * u(t), g/l2 *
> x2(t)+diff(x2t(t),t)+g/l2 * u(t)];

R := [(d
dt

x1(t)) − x1t(t), (d
dt

x2(t)) − x2t(t),

g x1(t)

l1
+ (d

dt
x1t(t)) +

g u(t)

l1
,

g x2(t)

l2
+ (d

dt
x2t(t)) +

g u(t)

l2
]

Hereg is the gravitational constant,x1(t) andx2(t) are
the positions of the end points of the two pendula at time
t andu(t) is the position of the bar at timet.

These differential expressions are obtained from a sec-
ond order ordinary differential system by substitutingx1t

for the derivative ofx1 with respect to timet and similarly
for the derivative ofx2 with respect tot. Hence, we
consider a first order linear system. The corresponding
differential operator, which is expected as input for the
homalg procedures, can be written as follows:

> A:=Diff2Op(R, ivar, dvar);

A :=

2

6

6

6

6

4

[[1, [t]]] 0 [[−1, []]] 0 0
0 [[1, [t]]] 0 [[−1, []]] 0

[[
g

l1
, []]] 0 [[1, [t]]] 0 [[

g

l1
, []]]

0 [[
g

l2
, []]] 0 [[1, [t]]] [[

g

l2
, []]]

3

7

7

7

7

5

Here each entry is to be interpreted as a lin-
ear combination of the differential operatorsd

i

dti
rep-

resented by [t, . . . , t
︸ ︷︷ ︸

i times

], i ∈ Z≥0. For example,

[[C1 , [t, t, t]], [C2 , [t]], [C3 , []]] represents the differential
operatorC1 d3

dt3
+ C2 d

dt
+ C3 .

We find a presentation of the module associated with
the linear system over the Weyl algebra with rational
coefficients, i.e. of the cokernel of(.A):

> M:=Cokernel(A, ivar, RPJ);

TABLE I

CHARACTERIZING SYSTEM/MODULE PROPERTIES

system module
homological

algebra

autonomous elements TM 6= 0 Ext1(M⊤, D) 6= 0

controllability,
parametrizability

TM = 0 Ext1(M⊤, D) = 0

Exti(M⊤, D) = 0,parametrizability
reflexiveof the parametrization

i = 1, 2

.

int. stabilizability, Exti(M⊤, D) = 0,

BÉZOUT-identity, projective
chain ofn parametrizations 1 ≤ i ≤ n

in general no criteriaflatness free
but for a PID: torsion-free = free

M := [[[[[1, []]], 0, 0] = [[[1, []]], 0, 0, 0, 0],

[0, [[1, []]], 0] = [0, [[1, []]], 0, 0, 0],

[0, 0, [[1, []]]] = [0, 0, 0, 0, [[1, []]]]],

[[0, [[1, [t, t]], [
g

l2
, []]],

[[
g

l2
, []]]], [[[1, [t, t]], [

g

l1
, []]], 0, [[

g

l1
, []]]]],

“Presentation”, 3 + 3 s+
s2

1 − s
, [1]]

This presentation uses the above notation for differential
operators. A more readable representation ofM can be
obtained by using the procedurePres2Diff from the
package JANET:

> Pres2Diff(M, ivar, dvar);

[

[T1(t) = x1(t), T2(t) = x2(t), T3(t) = u(t)],

[

(d
2

dt2
T2(t)) l2 + g T2(t)

l2
+
g T3(t)

l2
,

(d
2

dt2
T1(t)) l1 + g T1(t)

l1
+
g T3(t)

l1

]

,

“Presentation”, 3 + 3 s+
s2

1 − s
, [1]

]

Using ’Janet1’ (and hence the JACOBSON normal form)
it turns out that the cokernel is cyclic and even free (of
rank 1). This only holds in the generic casel1 6= l2

because in the following computationl1 − l2 6= 0 is
assumed:

> Pres2Diff(Cokernel(A, ivar, RPJ1),
> ivar, dvar);

[[T1(t) = − l1 x1(t)

l2
+ x2(t)], [0],

“Presentation”,
1

1 − s
, [1]]

Now we study the case that the lengthsl1 , l2 of the
pendula are equal:

> R2:=subs(l2=l1, R);

R2 := [(d
dt

x1(t)) − x1t(t), (d
dt

x2(t)) − x2t(t),

g x1(t)

l1
+ (d

dt
x1t(t)) +

g u(t)

l1
,

g x2(t)

l1
+ (d

dt
x2t(t)) +

g u(t)

l1
]

The system needs to be converted to the differential
operator form for the use ofhomalg :

> A2:=Diff2Op(R2, ivar, dvar);

A2 :=

2

6

6

6

6

4

[[1, [t]]] 0 [[−1, []]] 0 0
0 [[1, [t]]] 0 [[−1, []]] 0

[[
g

l1
, []]] 0 [[1, [t]]] 0 [[

g

l1
, []]]

0 [[
g

l1
, []]] 0 [[1, [t]]] [[

g

l1
, []]]

3

7

7

7

7

5

Again we find a presentation of the module associated
with the linear system over the Weyl algebra with rational
coefficients, i.e. of the cokernel of(.A2):

> M2:=Cokernel(A2, ivar, RPJ):
> Pres2Diff(M2, ivar, dvar);

[

[T1(t) = x1(t), T2(t) = x2(t), T3(t) = u(t)],

[

(d
2

dt2
T2(t)) l1 + g T2(t)

l1
+
g T3(t)

l1
,

(d
2

dt2
T1(t)) l1 + g T1(t)

l1
+
g T3(t)

l1

]

,

“Presentation”, 3 + 3 s+
s2

1 − s
, [1]

]

From this presentation the structural properties of the
module are not evident at first sight. However, the JACOB-
SON normal form provides a different presentation with
two generators, a torsion and a free one:

> Pres2Diff(Cokernel(A2, ivar,
> RPJ1), ivar, dvar);

[

[T1(t) = −x1(t) + x2(t), T2(t) = x1(t)],

[

(d
2

dt2
T1(t)) l1 + g T1(t)

l1

]

, “Presentation”,

2 + 2 s+
s2

1 − s
, [1]

]

In fact, using ’Janet’ again, we find that the torsion
submodule ofcoker(.A2) is generated by the difference
of the positionsx1(t), x2(t) of the end points of the
two pendula, which is an autonomous element of the
system. This autonomous element satisfies the second
order ordinary differential equation given in the second
entry of the result:

> Pres2Diff(TorsionSubmodule(M2,
> ivar, RPJ), ivar, dvar);

[

[T1(t) = x1(t) − x2(t)],

[

(d
2

dt2
T1(t)) l1 + g T1(t)

l1

]

, “Presentation”, 1 + s, [0]

]

B. A satellite in a circular equatorial orbit

In this subsection we applyhomalg and OREMOD-
ULES to a linear system describing a satellite in a circular
equatorial orbit. For more details see [11], p. 60 and p. 145,
and [12], p. 6, p. 11 and p. 17, and theLibrary of Examples
[4].

We load the packagehomalg and the ring-specific
package OREMODULES providing procedures for the al-
gebraic analysis of linear systems over Ore algebras.

> with(OreModules):

> with(homalg):

Warning, the name Involution
has been redefined

Since we only use the ring-specific package ORE-
MODULES, we set the default package forhomalg to
’OreModules’:

> ‘homalg/default‘:=
> ‘OreModules/homalg‘;

homalg/default := OreModules/homalg

First, we define the Weyl algebraAlg =
A1(Q(ω,m, r, a, b)) = Q(ω,m, r, a, b)[t][Dt], where
Dt acts as differentiation w.r.t. timet. Note that we
have to declare the parametersω (angular velocity),m
(mass of the satellite),r (radius component in the polar
coordinates),a andb (parameters specifying the thrust) of
the system in the definition of the Ore algebra:

> Alg:=DefineOreAlgebra(diff=[Dt,t],
> polynom=[t],comm=[omega,m,r,a,b]):

The linearized ordinary differential equations for the
satellite in a circular orbit are given by the following matrix
R. These equations describe the motion of the satellite in
the equatorial plane, where the fifth and the sixth column
of R incorporate the controlsu1 , u2 which represent radial
thrust resp. tangential thrust caused by rocket engines
([11], p. 60 and p. 145).

> R:=matrix([[Dt,-1,0,0,0,0],
> [-3 * omegaˆ2,Dt,0,-2 * omega* r,-a/m,
> 0], [0,0,Dt,-1,0,0],
> [0,2 * omega/r,0,Dt,0,-b/(m * r)]]);

R :=

Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r − a

m
0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 − b

m r

We find a presentation of the module associated with
the linear system over the Weyl algebraAlg , i.e. of the
cokernel1 of (.R):

> M:=Cokernel(R, Alg);

1Cokernel uses several methods to construct a presentation with
a small number of generators, i.e. if one generator can be expressed in
terms of the others, then it is eliminated from the presentation. This is for
example the case, if one of the relations contains a unit. The ring-package
is responsible for recognizing the units. In the latest version of homalg
and OREMODULES the outputM of Cokernel is a presentation with
two generators without relations, hence the cokernel is free of rank2, and
hence torsion-free. In order to demonstrate the computation of extension
modules, we work with the presentation matrixR instead ofM .

M := [[[1, 0, 0, 0] = [1, 0, 0, 0, 0, 0],

[0, 1, 0, 0] = [0, 0, 1, 0, 0, 0],

[0, 0, 1, 0] = [0, 0, 0, 0, 1, 0],

[0, 0, 0, 1] = [0, 0, 0, 0, 0, 1]],

[[2ωDt m, Dt2mr, 0, −b],
[−3mω2 +mDt2, −2ω rDt m, −a, 0]],

“Presentation”, −2 (s+ 1)

−1 + s
+

2

(−1 + s)2
]

We compute the formal adjoint of the differential oper-
atorR:

> R_adj:=Involution(R, Alg);

R adj :=

−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0 − a

m
0 0

0 0 0 − b

m r

Some structural properties of the linear system under
consideration are determined by computing the extension
modules with values inAlg of the cokernel of(.R adj).
We compute the first extension module:

> Ext_R(1, R_adj, Alg);

1 =

0
0
0
0
0
0

, [1], “Presentation”, 0

From this presentation we see that the first extension
module is zero. By (1) we conclude that the torsion
submodule of the cokernel of(.R) is zero. Hence, the
system of the satellite is controllable.

> TorsionSubmodule(R, Alg);

[[1 = [0, 0, 0, 0, 0, 0]], [1], “Presentation”, 0]

The next three statements demonstrate that this torsion
submodule was computed byhomalg using the procedure
ParametrizeModule which returns a differential op-
eratorP such that the composition ofR and P is zero.
P defines a parametrization of the linear system given
by R if and only if the kernel of(.P) equals the image
of (.R), which means that the complex defined by these
morphisms is exact. If we consider functions in an injective
cogenerator (e.g. smooth functions for the present case of
a time-invariant linear system, [6], [17]), then we haveR
y = 0 if and only ify = P ξ for some vector of functionsξ.
In general,P defines an embedding of the biggest possible
factor module of the cokernel of(.R) into a free module.

> P:=ParametrizeModule(R, Alg);

P :=

b a 0
b aDt 0

0 b a
0 b aDt

−3 bmω2 + Dt2 bm −2Dt b ω rm
2 aDt mω aDt2mr

> Compose(R, P, Alg);

0 0
0 0
0 0
0 0

> DefectOfHoms(R, P, Alg);

[[1 = [0, 0, 0, 0, 0, 0]], [1], “Presentation”, 0]

Since the system is controllable, we now check whether
the system is flat [9], [6]. Every left-inverse of the
parametrizationP gives a flat output of the system:

> S:=Leftinverse(P, Alg);

S :=

1

b a
0 0 0 0 0

0 0
1

b a
0 0 0

Therefore, (ξ1, ξ2)
T = S (x1, x2, x3, x4, u1, u2)

T

is a flat output of the system which satisfies
(x1, x2, x3, x4, u1, u2) = P (ξ1, ξ2)

T .
We notice that this flat output exists only ifab 6= 0.

Hence, in the generic case the system is flat. Equivalently,
the cokernel of(.R) is free and, in particular, projective.

Let us remember that the full row-rank matrixR admits
a right-inverse if and only if the cokernel of(.R) is
projective. By the theorem of Quillen-Suslin [16], [8] for
modules over commutative polynomial rings, projective-
ness is the same as freeness. So,coker(.R) is projective
which we could also have discovered by succeeding to
compute a right-inverse ofR:

> Rightinverse(R, Alg);

0 0 0 0
−1 0 0 0
0 0 0 0
0 0 −1 0

−Dt m

a
−m
a

2ω rm

a
0

−2mω

b
0 −Dt mr

b
−mr

b

Following [12], we modify the description of the control
of the satellite in the system. If the rocket engines are
commanded from the earth, then, due to transmission time,
a constant time-delay occurs in the system. Hence, we
enlarge the above Ore algebra by a shift operatorδ:

> Alg2:=DefineOreAlgebra(
> diff=[Dt,t],dual_shift=[delta,s],
> polynom=[t,s],comm=[omega,m,r,a,
> b], shift_action=[delta,t]):

The system matrix is given as follows:

> R2:=matrix([[Dt,-1,0,0,0,0],
> [-3 * omegaˆ2,Dt,0,-2 * omega* r,
> -a * delta/m,0], [0,0,Dt,-1,0,0],
> [0,2 * omega/r,0,Dt,0,
> -b * delta/(m * r)]]);

R2 :=

Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r −a δ
m

0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 − b δ

m r

We define a formal adjointR2 adj of R2 using an
involution of Alg2 :

> R2_adj:=Involution(R2, Alg2);

R2 adj :=

−Dt −3ω2 0 0

−1 −Dt 0
2ω

r

0 0 −Dt 0
0 −2ω r −1 −Dt

0
a δ

m
0 0

0 0 0
b δ

m r

We check controllability and parametrizability of the
system:

> Ext_R(1, R2_adj, Alg2);

1 =

0
0
0
0
0
0

, [1], “Presentation”, 0

We find that the first extension module with values in
Alg2 of the cokernel of(.R2 adj) is generically the zero
module. Equivalently, the system is generically control-
lable, i.e. parametrizable.

We continue to study the structural properties of the sys-
tem by examining the algebraic properties of the cokernel
of (.R2). The next step is to compute the second extension
module with values inAlg2 of the cokernel of(.R2 adj):

> Ext_R(2, R2_adj, Alg2);

[[[1, 0] =

[
1
0

]

, [0, 1] =

[
0
1

]

],

[[0, δ], [δ, 0], [2ωDt , Dt2 r], [Dt2 − 3ω2, −2Dt ω r]],

“Presentation”,
2 (s+ 1)

(−1 + s)2
]

The second extension module is not zero. Hence, the
cokernel of(.R2) is not projective. SinceR2 has full row-
rank, this is equivalent to the fact thatR2 does not admit
a right-inverse:

> Rightinverse(R2, Alg2);

FAIL

In the special case wherea = 1 andb = 0, i.e. the case
where there is only a radial thrust, we have the following
system matrix:

> R20:=subs(a=1, b=0, copy(R2));

R20 :=

Dt −1 0 0 0 0

−3ω2 Dt 0 −2ω r − δ

m
0

0 0 Dt −1 0 0

0
2ω

r
0 Dt 0 0

A presentation of the first extension module with values
in Alg2 of the cokernel of the formal adjoint of(.R20) is
given by:

> Ext_R(1, Involution(R20, Alg2),
> Alg2);

1 =

2ω
0
0
r
0
0

, [Dt], “Presentation”, − 1

(−1 + s)3

Hence, we find a torsion element of the coker-
nel of (.R20) which corresponds to an autonomous
element of the satellite system. Using the procedure
TorsionSubmodule of homalg this presentation can
be obtained directly:

> TorsionSubmodule(R20, Alg2);

[[1 = [2ω, 0, 0, r, 0, 0]], [Dt], “Presentation”,

− 1

(−1 + s)3
]

REFERENCES

[1] M. Barakat, D. Robertz,First steps to an abstract package for
homological algebra, to appear, Proceedings EACA 2006, Spain.

[2] M. Barakat, D. Robertz,homalg : An abstract package for homo-
logical algebra, in preparation.

[3] Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, D. Robertz,
The MAPLE Package “Janet”: I. Polynomial Systems. II. Linear
Partial Differential Equations.Proc. 6th Int. Workshop on Com-
puter Algebra in Scientific Computing, Passau, 2003. Cf. also
http://wwwb.math.rwth-aachen.de/Janet .

[4] F. Chyzak, A. Quadrat, D. Robertz, OREMODULES project,
http://wwwb.math.rwth-aachen.de/OreModules .

[5] F. Chyzak, A. Quadrat, D. Robertz, OREMODULES: A symbolic
package for the study of multidimensional linear systems.Proceed-
ings MTNS 2004, Belgium.

[6] F. Chyzak, A. Quadrat, D. Robertz,Effective algorithms for
parametrizing linear control systems over Ore algebras, Appl.
Algebra Engrg. Comm. Comput.16 (2005), pp. 319–376.

[7] P. M. Cohn,Free Rings and their Relations, Academic Press, second
edition, 1985.

[8] A. Fabiánska, A. Quadrat,Flat shift-invariant multidimensional
linear systems are algebraically equivalent to controllable 1-D
linear systems, to appear, Proceedings MTNS 2006, Japan.

[9] M. Fliess, J. Ĺevine, P. Martin, P. Rouchon,Flatness and defect of
nonlinear systems: introductory theory and examples, Int. J. Control
61 (1995), pp. 1327–1361.

[10] P. J. Hilton, U. Stammbach,A Course in Homological Algebra,
second edition, Springer, 1997.

[11] T. Kailath, Linear Systems, Prentice-Hall, 1980.
[12] H. Mounier, Propriét́es structurelles des systèmes lińeaires à re-

tards: aspects th́eoriques et pratiques, PhD thesis, University of
Orsay, France, 1995.

[13] W. Plesken, D. Robertz.Janet’s approach to presentations and
resolutions for polynomials and linear pdes.Arch. Math. 84:1
(2005), pp. 22–37.

[14] J.-F. Pommaret,Partial Differential Control Theory, Kluwer, 2001.
[15] A. Quadrat,Analyse alǵebrique des systèmes de contrôle linéaires

multidimensionnels, PhD thesis, Ecole Nationale des Ponts et
Chausśees, France, 1999.

[16] J. J. Rotman,An Introduction to Homological Algebra, Academic
Press, 1979.

[17] E. Zerz,Topics in Multidimensional Linear Systems Theory, Lecture
Notes in Control and Information Sciences 256, Springer, 2000.

