Codes und Systemtheorie

Aufgaben 1–3 werden am 08.07.11 besprochen, Aufgaben 4–6 am 15.07.11.

Aufgabe 1. Sei $\mathcal{C} \leq \mathbb{F}[z]^{1 \times n}$ ein Faltungscode. Zeigen Sie, dass $\mathcal{C}^{\circ} = \rho(\mathcal{C}^{\perp})$ gilt.

Aufgabe 2. Sei $\mathcal{C} \leq \mathbb{F}[z]^{1 \times n}$ ein Faltungscode mit Komplexität δ und minimaler Realisierung (A, B, C, D), wobei $\det(A) \neq 0$ gelte. Bestimmen Sie eine minimale Realisierung von $\rho(\mathcal{C})$.

Aufgabe 3. Wir untersuchen, ob die Vereinigung der

$$\mathfrak{A}_{X|\hat{X}} = \{(u,y) \in \mathbb{F}^{1 \times (k+(n-k))} \mid \hat{X} = XA + uC, y = XB + uD\}$$

disjunkt ist.

- 1. Bestimmen Sie die Anzahl der Knoten, Kanten und möglichen Kantenlabels des Zustandsgraphen einer minimalen Realisierung eines (n, k, δ) -Faltungscodes. Schließen Sie, dass $\delta \leq n k$ eine notwendige Bedingung für Disjunktheit ist.
- 2. Überzeugen Sie sich anhand von

$$G = [z^2, 1, 1] \in \mathbb{F}_2[z]^{1 \times 3}$$

davon, dass die Bedingung nicht hinreichend ist.

3. Zeigen Sie, dass die Vereinigung genau dann disjunkt ist, wenn B vollen Zeilenrang hat.

Aufgabe 4. Sei $C = C^{\perp} \leq \mathbb{F}[z]^{1 \times n}$ ein selbstdualer Faltungscode. Zeigen Sie, dass

$$\mathcal{C}(0) := \{c(0) \mid c \in \mathcal{C}\} \le \mathbb{F}^{1 \times n} \quad \text{und} \quad \mathcal{C}_{\text{max}} := \{c^{(d)} \mid c = \sum_{t=0}^{d} c^{(t)} z^t \in \mathcal{C}\} \le \mathbb{F}^{1 \times n}$$

selbstduale lineare Blockcodes sind. Die Behauptung gilt auch unter der Voraussetzung $\mathcal{C} = \mathcal{C}^{\circ}$, da $(\rho(\mathcal{C}))(0) = \mathcal{C}_{\max}$ und $(\rho(\mathcal{C}))_{\max} = \mathcal{C}(0)$.

Aufgabe 5. Bestimmen Sie einen Zustandsgraphen für den Faltungscode $\mathcal{C} \leq \mathbb{F}_3[z]^{1\times 3}$ mit Erzeugermatrix

$$G := \left(\begin{array}{ccc} z^2 + 1 & z + 2 & 0 \\ 1 & 0 & 2 \end{array}\right)$$

und seinen dualen Code \mathcal{C}^{\perp} . Rechnen Sie für diese beiden Codes die MacWilliams-Identität nach.

Aufgabe 6. Zeigen Sie, dass

$$C_{\mathcal{C}} = \bigcup_{X,\hat{X} \in \mathbb{F}^{\delta}} \mathfrak{A}_{X,\hat{X}}.$$

Benutzen Sie die Steuerbarkeitsbedingungen, die eine minimale Realisierung von $\mathcal C$ erfüllt.