Splitting central simple algebras of degree 4

Janka Pílniková
RICAM Linz, Austria

Nikolaus Conference
Aachen, 10 December 2005

Outline

(i) Central simple algebras.
(ii) Identifying $M_{2}(F)$.
(iii) Identifying $M_{4}(\mathbb{Q})$.

Central simple algebras

An algebra A over F is central simple, if
(i) $\mathbf{C}(A) \cong F$, where $\mathbf{C}(A)=\{a \in A \mid a x=x a \forall x \in A\}$.
(ii) A has no nontrivial ideals,
(iii) $[A: F]<\infty$.

Wedderburn's Structure Theorem, 1908.
(i) If A is a central simple algebra over F, then $A \cong M_{n}(\Delta)$, where Δ is a central division algebra over F.
(ii) If $M_{n}(\Delta) \cong M_{n^{\prime}}\left(\Delta^{\prime}\right)$, then $n=n^{\prime}$ and $\Delta \cong \Delta^{\prime}$.

Fact. For any central simple algebra A over F, there is $d \in \mathbb{N}$ s.t. $[A: F]=d^{2}$. We call d the degree of A.

TASK: Given A such that $A \cong M_{4}(\mathbb{Q})$, find an isomorphism $\varphi: A \rightarrow M_{4}(\mathbb{Q})$.

Cyclic algebra of degree 2

E - quadratic field extension of F,
$G=\operatorname{Gal}(E \mid F)$, i.e. $G=\{1, \sigma\}$,
$\gamma \in F^{*}$.
The cyclic algebra (E, G, γ) is a vector space over F with the basis $\{1, c, u, c u\}$ together with the multiplication rules
(i) $E=F(c)$,
(ii) $u c=\sigma(c) u$,
(iii) $u^{2}=\gamma$.
c - cyclic element,
u - principal generator of (E, G, γ) over E.

Proposition. (E, G, γ) is a central simple algebra of degree 2.

Cyclic algebra of degree 2 - continued

Proposition. Any central simple algebra of degree 2 is cyclic.
Example. Quaternion algebra over \mathbb{Q} :

$$
\text { basis: }\{1, i, j, k\}
$$

$$
\text { multiplication: } i^{2}=j^{2}=k^{2}=-1, \quad i j=k, \quad j k=i, k i=j
$$

cyclic element $c=i$:

$$
\begin{aligned}
& \mu_{i}(\xi)=\xi^{2}+1 \text { is irreducible over } \mathbb{Q} \\
& E=\mathbb{Q}(i) \\
& \mu_{i}(\xi)=(\xi-i)(\xi+i), \text { so } \sigma(i)=-i
\end{aligned}
$$

principal generator $u=j$:
j is a nontrivial solution to $u i=\sigma(i) u=-i u$.
$\gamma=j^{2}=-1$.

Reduction to the norm equation

Lemma. The cyclic algebra (E, G, γ) over F is isomorphic to $M_{2}(F)$ if and only if there is $s \in E$ such that

$$
\begin{equation*}
s \sigma(s)=\frac{1}{\gamma} . \tag{1}
\end{equation*}
$$

Proof: If s is a solution to the norm equation (1), then $\{1+s u, c(1+s u)\}$ is a basis of a left ideal in (E, G, γ), where $c \in E, c \notin F$ and u is a principal generator of A over E.

REmark. If A is a central simple algebra of degree 2 over \mathbb{Q}, then there are much faster methods for deciding and finding an isomorphism with $M_{2}(\mathbb{Q})$.

Left ideals and zero divisors in $M_{n}(F)$

A - central simple algebra of degree n over F,
\mathcal{L} - left ideal in A.
Then $[\mathcal{L}: \mathbb{Q}] \in\left\{0, n, 2 n, \ldots, n^{2}\right\}$.

Proposition. Let \mathcal{L} be an n-dimensional left ideal in A.
For $a \in A$ we define $\varphi_{a}: \mathcal{L} \rightarrow \mathcal{L}, x \mapsto a x$.
Then $\varphi: A \rightarrow M_{n}(F), a \mapsto$ the matrix of φ_{a}
is an isomorphism of algebras.
$A \cong M_{4}(\mathbb{Q})$,
$d \in A$ - a zero divisor.
$\rho_{d}: A \rightarrow A, x \mapsto x d$ (a vector space endomorphism).
Then $\operatorname{Ker} \rho_{d}, \operatorname{Im} \rho_{d}$ are nontrivial left ideals: $\left[\operatorname{Ker} \rho_{d}: \mathbb{Q}\right],\left[\operatorname{Im} \rho_{d}: \mathbb{Q}\right] \in\{4,8,12\}$. Another left ideal: $\operatorname{Ker} \rho_{d} \cap \operatorname{Im} \rho_{d}$.

Using a zero divisor in $A \cong M_{4}(\mathbb{Q})$

For a fixed $d \in A, \rho_{d}: A \rightarrow A, x \mapsto x d$,

$$
\lambda_{d}: A \rightarrow A, x \mapsto d x .
$$

Lemma. Assume $A \cong M_{4}(\mathbb{Q})$.
Let d be a zero divisor in A such that $\left[\operatorname{Ker} \rho_{d}: \mathbb{Q}\right]=\left[\operatorname{Im} \rho_{d}: \mathbb{Q}\right]=8$ and $\operatorname{Ker} \rho_{d} \cap \operatorname{Im} \rho_{d}=0$.

Then $\operatorname{Im} \rho_{d} \cap \operatorname{Im} \lambda_{d} \cong M_{2}(\mathbb{Q})$.
If $d \in A$ is a zero divisor as in the Lemma, then

1. set $A_{2}=\operatorname{Im} \rho_{d} \cap \operatorname{Im} \lambda_{d}$,
2. find an isomorphism $A_{2} \rightarrow M_{2}(\mathbb{Q})$,
3. take a zero divisor d^{\prime} in A_{2},
4. for $d^{\prime} \in A$ then holds $\left[\operatorname{Im} \rho_{d^{\prime}}: \mathbb{Q}\right]=4$.

Using a zero divisor in $A \cong M_{4}(\mathbb{Q})$ - continued

Lemma. Assume $A \cong M_{4}(\mathbb{Q})$.
Let d be a zero divisor in A such that $\operatorname{Ker} \rho_{d}=\operatorname{Im} \rho_{d}$ so that $\left[\operatorname{Ker} \rho_{d}: \mathbb{Q}\right]=8$.
Then the centralizer $\mathbf{C}_{A}(d)=\{x \in d \mid x d=d x\}$ is an associative algebra of dimension 8 over \mathbb{Q} and $\mathbf{C}_{A}(d) / \mathcal{R} \cong M_{2}(\mathbb{Q})\left(\mathcal{R}=\right.$ Jacobson radical of $\left.\mathbf{C}_{A}(d)\right)$.

If $d \in A$ is a zero divisor as in the Lemma, then

1. set $A_{1}=\mathbf{C}_{A}(d)$,
2. set $A_{2}=A_{1} / \mathcal{R}$ and let $\pi: A_{1} \rightarrow A_{2}, x \mapsto x+\mathcal{R}$,
3. find an isomorphism $A_{2} \rightarrow M_{2}(\mathbb{Q})$,
4. take a zero divisor d_{2} in A_{2},
5. for a generic $d^{\prime} \in \pi^{-1}\left(d_{2}\right)$ then holds $\left[\operatorname{Ker} \rho_{d^{\prime}}: \mathbb{Q}\right]=4$.

Finding a zero divisor in $A \cong M_{4}(\mathbb{Q})$

Double Centralizer Theorem. Let B be a central simple algebra over F.
Let C be a simple subalgebra of B. Then
(i) $\mathbf{C}_{B}(C)$ is a simple subalgebra of B,
(ii) $[C: F]\left[\mathbf{C}_{B}(C): F\right]=[B: F]$,
(iii) $\mathbf{C}_{B}\left(\mathbf{C}_{B}(C)\right)=C$.

1. Find $a \in A$ such that μ_{a} of a is irreducible of degree 2 .
2. $F=\mathbb{Q}(a)$ is a simple subalgebra of A and $[\mathbb{Q}(a): \mathbb{Q}]=2$.
3. Then $A_{2}=\mathbf{C}_{A}(a)$ is a simple subalgebra of A such that

$$
\begin{aligned}
& {\left[A_{2}: \mathbb{Q}\right]=8} \\
& \mathbf{C}\left(A_{2}\right)=\mathbb{Q}(a),
\end{aligned}
$$

4. Hence A_{2} can be regarded as a central simple algebra over $F=\mathbb{Q}(a)$. Then $\left[A_{2}: \mathbb{Q}(a)\right]=4$.

Finding a zero divisor in $A \cong M_{4}(\mathbb{Q})$ - continued

Set $F=\mathbb{Q}(a)$ and regard A_{2} as an algebra over F.
Lemma. $A_{2} \cong M_{2}(F)$.

1. Write A_{2} as a cyclic algebra:
(a) Take $c \in A_{2}$ such that $\mu_{c}(\xi) \in F[\xi]$ of c is quadratic irreducible.
(b) By factoring μ_{c} over $F(c)$ find $\sigma(c)$:

$$
\mu_{c}(\xi)=(\xi-c)(\xi-\sigma(c)), \text { where } \sigma \in \operatorname{Gal}(F(c) \mid F)
$$

(c) Set u to be any nontrivial solution of the system $u c=\sigma(c) u$ and set

$$
\gamma=u^{2}
$$

2. Find $s \in F(c)$ such that $s \sigma(s)=\frac{1}{\gamma}$.

Then $(s u)^{2}=s u s u=s \sigma(s) u^{2}=1$.
3. The minimum polynomial $\mu_{s u}(\xi)=\xi^{2}-1=(\xi-1)(\xi+1)$, so $s u-1$ and $s u+1$ are zero divisors.

