Splitting central simple algebras of degree 4

Janka Pílniková RICAM Linz, Austria

Nikolaus Conference Aachen, 10 December 2005

Outline

- (i) Central simple algebras.
- (ii) Identifying $M_2(F)$.
- (iii) Identifying $M_4(\mathbb{Q})$.

Central simple algebras

An algebra A over F is *central simple*, if

- (i) $\mathbf{C}(A) \cong F$, where $\mathbf{C}(A) = \{a \in A \mid ax = xa \ \forall x \in A\}.$
- (ii) A has no nontrivial ideals,

(iii) $[A:F] < \infty$.

WEDDERBURN'S STRUCTURE THEOREM, 1908.

- (i) If A is a central simple algebra over F, then $A \cong M_n(\Delta)$, where Δ is a central division algebra over F.
- (ii) If $M_n(\Delta) \cong M_{n'}(\Delta')$, then n = n' and $\Delta \cong \Delta'$.

FACT. For any central simple algebra A over F, there is $d \in \mathbb{N}$ s.t. $[A : F] = d^2$. We call d the *degree* of A.

TASK: Given A such that $A \cong M_4(\mathbb{Q})$, find an isomorphism $\varphi \colon A \to M_4(\mathbb{Q})$.

Cyclic algebra of degree 2

E - quadratic field extension of F, $G={\rm Gal}(E|F),$ i.e. $G=\{1,\sigma\},$ $\gamma\in F^*.$

The cyclic algebra (E, G, γ) is a vector space over F with the basis $\{1, c, u, cu\}$ together with the multiplication rules

- (i) E = F(c), (ii) $uc = \sigma(c)u$, (iii) $u^2 = \gamma$.
 - *c cyclic element*,
 - u principal generator of (E, G, γ) over E.

PROPOSITION. (E, G, γ) is a central simple algebra of degree 2.

PROPOSITION. Any central simple algebra of degree 2 is cyclic.

EXAMPLE. Quaternion algebra over \mathbb{Q} : basis: $\{1, i, j, k\}$ multiplication: $i^2 = j^2 = k^2 = -1$, ij = k, jk = i, ki = j. cyclic element c = i:

$$\mu_i(\xi) = \xi^2 + 1 \text{ is irreducible over } \mathbb{Q},$$

$$E = \mathbb{Q}(i),$$

$$\mu_i(\xi) = (\xi - i)(\xi + i), \text{ so } \sigma(i) = -i.$$

principal generator u = j:

$$j$$
 is a nontrivial solution to $ui=\sigma(i)u=-iu.$ $\gamma=j^2=-1.$

Reduction to the norm equation

LEMMA. The cyclic algebra (E, G, γ) over F is isomorphic to $M_2(F)$ if and only if there is $s \in E$ such that

$$s\sigma(s) = \frac{1}{\gamma}.\tag{1}$$

PROOF: If s is a solution to the norm equation (1), then $\{1 + su, c(1 + su)\}$ is a basis of a left ideal in (E, G, γ) , where $c \in E, c \notin F$ and u is a principal generator of A over E.

REMARK. If A is a central simple algebra of degree 2 over \mathbb{Q} , then there are much faster methods for deciding and finding an isomorphism with $M_2(\mathbb{Q})$.

A - central simple algebra of degree n over F, \mathcal{L} - left ideal in A. Then $[\mathcal{L}:\mathbb{Q}] \in \{0, n, 2n, \dots, n^2\}$.

PROPOSITION. Let \mathcal{L} be an *n*-dimensional left ideal in A. For $a \in A$ we define $\varphi_a \colon \mathcal{L} \to \mathcal{L}, x \mapsto ax$.

Then $\varphi \colon A \to M_n(F)$, $a \mapsto$ the matrix of φ_a is an isomorphism of algebras.

 $A \cong M_4(\mathbb{Q}),$ $d \in A - \text{a zero divisor.}$ $\rho_d: A \to A, x \mapsto xd \text{ (a vector space endomorphism).}$

Then Ker ρ_d , Im ρ_d are nontrivial left ideals: [Ker $\rho_d : \mathbb{Q}$], [Im $\rho_d : \mathbb{Q}$] $\in \{4, 8, 12\}$. Another left ideal: Ker $\rho_d \cap \text{Im } \rho_d$.

For a fixed
$$d \in A$$
, $\rho_d \colon A \to A$, $x \mapsto xd$,
 $\lambda_d \colon A \to A$, $x \mapsto dx$.

LEMMA. Assume $A \cong M_4(\mathbb{Q})$. Let d be a zero divisor in A such that $[\operatorname{Ker} \rho_d : \mathbb{Q}] = [\operatorname{Im} \rho_d : \mathbb{Q}] = 8$ and $\operatorname{Ker} \rho_d \cap \operatorname{Im} \rho_d = 0$.

Then $\operatorname{Im} \rho_d \cap \operatorname{Im} \lambda_d \cong M_2(\mathbb{Q})$.

If $d \in A$ is a zero divisor as in the Lemma, then

- 1. set $A_2 = \operatorname{Im} \rho_d \cap \operatorname{Im} \lambda_d$,
- 2. find an isomorphism $A_2 \to M_2(\mathbb{Q})$,
- 3. take a zero divisor d' in A_2 ,
- 4. for $d' \in A$ then holds $[\operatorname{Im} \rho_{d'} : \mathbb{Q}] = 4$.

Using a zero divisor in $A\cong M_4(\mathbb{Q})$ – continued

LEMMA. Assume $A \cong M_4(\mathbb{Q})$.

Let d be a zero divisor in A such that $\operatorname{Ker} \rho_d = \operatorname{Im} \rho_d$ so that $[\operatorname{Ker} \rho_d : \mathbb{Q}] = 8$.

Then the centralizer $\mathbf{C}_A(d) = \{x \in d \mid xd = dx\}$ is an associative algebra of dimension 8 over \mathbb{Q} and $\mathbf{C}_A(d)/\mathcal{R} \cong M_2(\mathbb{Q})$ ($\mathcal{R} = \text{Jacobson radical of } \mathbf{C}_A(d)$).

If $d \in A$ is a zero divisor as in the Lemma, then

- 1. set $A_1 = \mathbf{C}_A(d)$,
- 2. set $A_2 = A_1/\mathcal{R}$ and let $\pi \colon A_1 \to A_2$, $x \mapsto x + \mathcal{R}$,
- 3. find an isomorphism $A_2 \to M_2(\mathbb{Q})$,
- 4. take a zero divisor d_2 in A_2 ,
- 5. for a generic $d' \in \pi^{-1}(d_2)$ then holds $[\operatorname{Ker} \rho_{d'} : \mathbb{Q}] = 4$.

DOUBLE CENTRALIZER THEOREM. Let B be a central simple algebra over F. Let C be a simple subalgebra of B. Then

- (i) $C_B(C)$ is a simple subalgebra of B,
- (ii) $[C:F][\mathbf{C}_B(C):F] = [B:F],$

(iii) $\mathbf{C}_B(\mathbf{C}_B(C)) = C.$

- 1. Find $a \in A$ such that μ_a of a is irreducible of degree 2.
- 2. $F = \mathbb{Q}(a)$ is a simple subalgebra of A and $[\mathbb{Q}(a) : \mathbb{Q}] = 2$.
- 3. Then $A_2 = \mathbf{C}_A(a)$ is a simple subalgebra of A such that $[A_2 : \mathbb{Q}] = 8,$ $\mathbf{C}(A_2) = \mathbb{Q}(a),$
- 4. Hence A_2 can be regarded as a central simple algebra over $F = \mathbb{Q}(a)$. Then $[A_2 : \mathbb{Q}(a)] = 4$.

Set $F = \mathbb{Q}(a)$ and regard A_2 as an algebra over F.

LEMMA. $A_2 \cong M_2(F)$.

- 1. Write A_2 as a cyclic algebra:
 - (a) Take $c \in A_2$ such that $\mu_c(\xi) \in F[\xi]$ of c is quadratic irreducible.
 - (b) By factoring μ_c over F(c) find $\sigma(c)$: $\mu_c(\xi) = (\xi - c)(\xi - \sigma(c))$, where $\sigma \in \text{Gal}(F(c)|F)$.
 - (c) Set u to be any nontrivial solution of the system $uc=\sigma(c)u$ and set $\gamma=u^2.$
- 2. Find $s \in F(c)$ such that $s\sigma(s) = \frac{1}{\gamma}$. Then $(su)^2 = susu = s\sigma(s)u^2 = 1$.
- 3. The minimum polynomial $\mu_{su}(\xi) = \xi^2 1 = (\xi 1)(\xi + 1)$, so su - 1 and su + 1 are zero divisors.